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Executive summary

The goal of the B-USEFUL project is to contribute to achieve policy goals of EU Green Deal and
the Biodiversity Strategy 2030 by developing user-oriented tools and solutions to conserve
and protect marine biodiversity, effectively building and improving upon existing European
data infrastructures and governance frameworks. The role of this deliverable is to report on
key outcomes of extensive modelling activities undertaken by partners under Task 3.1. The
modelling of marine species distribution, composition and overall diversity featured within
this deliverable report represent a broad range of marine ecosystems and organisms sampled
along European shelf seas from the Eastern Mediterranean Sea to Greenland and Barents Sea.
Consequently, the organisms and areas considered are exposed to very different regional and
local environmental conditions, both in terms of climate and hydrography, but also with
regards to the type and level of human activities and their associated pressures. Furthermore,
the model development relies on available monitoring data that may differ in terms of the
spatio-temporal extent, as well as the amount and resolution of species occurrence and
abundances data and their associated trait information. Despite these differences, the model
results allows us to compare key outputs across areas and organism groups.

In terms of environmental drivers we found that ocean climate and hydrography are primary
determinants of species distributions and community composition. Among these, bottom
temperature stands out as a key predictor throughout most areas, with species responding
both positively and negatively to increasing temperature. In addition to the broad and
ubiquitous effect of temperature, we found a number of environmental variables with more
regional and local impacts, including depth and salinity. Taken together, the broad range of
studies indicate that environmental filtering, conditioned on drivers and conditions operating
across both larger and local spatial scales is a primary community assembly process
determining the past, current, but also future distribution and composition of marine
organisms throughout European Seas. However, while a large degree of variation in species
distribution and abundance can be explained by the set of environmental conditions included,
the importance of spatial random effects across our models underscore the importance of
other drivers and assembly processes. These include a range of largely unmeasured
environmental covariates not yet accounted for in our modelling setup, but also potential
biotic effects channelled through competitive or predator-prey interactions. Hence, we
recommend further efforts compiling data and information on such candidate drivers, as well
as studies examining the role and relative importance of local biotic interactions, partly
reflected by the pair-wise residual associations of our models.

The set of biodiversity indicators estimated from the fitted and validated models, or from data
analysis, include both species and community-level indicators (i.e., reflecting the overall
taxonomic and functional richness, evenness and dispersion). These indicators show marked
spatial variation in terms of patterns and trends both within and among regions and metrics.
Taken together, the differences and similarities in patterns and trends among these “Essential
Biodiversity Variables” (EBVs) may challenge end-users and managers involved in Marine
Spatial Planning (MSP), especially since hotspots or broader regions of “high biodiversity” may
seem contingent on the set of indicators and metrics considered. Hence, we advocate a
broader and holistic perspective aiming to embrace this complexity when identifying
candidate locations and areas for protection under different scenarios of change.
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1. The role of this deliverable

The goal of the B-USEFUL project is to contribute to achieve policy goals of EU Green Deal and
the Biodiversity Strategy 2030 by developing user-oriented tools and solutions to conserve
and protect marine biodiversity, effectively building and improving upon existing European
data infrastructures and governance frameworks. The role of this deliverable is to report on
key outcomes of extensive modelling activities undertaken by partners under Task 3.1. The
set of methods rely primarily on advanced joint-species distribution models (jSDM) capable of
integrating multiple sources of data (e.g., observations of species composition and
abundances, environmental covariates, species traits and phylogeny) derived from data
collection and standardization performed under WP2. After proper cross-validation, the set
of trained and parameterized models are used to generate community-level outputs of
biodiversity indicators, reflecting a suite of “essential biodiversity variables” (EBVs) deemed
important by end-users (from workshops under WP1; D1.2). These include both spatial
patterns and trends in indicators across European Seas and for different organism groups (e.g.,
fish, benthic invertebrates, cephalopods). The activities build on training activities and
knowledge sharing among partners achieved through dedicated workshops together with key
experts in the field (Milestone 3.1). Beyond this deliverable, the developed models will be
used in downstream WPs, notably WP5 where scenario testing of conservation and
management strategies supporting Marine spatial planning (MSP), including Marine Protected
Areas (MPAs) will be performed and later visualized as part of decision-support tools (DST)
developed under WP6. The deliverable is structured to first provide a brief background of the
field, followed by a description of the key methods used and its setup and implementation
across areas and organism groups. The section represent primarily manuscript in preparation,
orin review, with a single contribution published prior to submission of this report (see section
3.2; Montanyes et al., 2023).

Figure 1.1. Participants of a training event organized in Barcelona (22-24™ Feb 2023) focused on Hierarchical
Modelling of Species Communities (HMSC).
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Acronyms and abbreviations

EBVs: Essential Biodiversity Variables

MSP: Marine Spatial Planning

MPAs: Marine Protected Areas

SDM: Species Distribution Modelling

JSDM: Joint Species Distribution Modelling

HMSC: Hierarchical Modelling of Species Communities

BTS: Beam Trawl Surveys

DATRAS: online database of trawl surveys at ICES

DOI: Digital Identifier of an Object

EMODnet: European Marine Observation and Data Network
GFCM: General Fisheries Commission for the Mediterranean
GFW: Global Fishing Watch

GSA: GFCM Geographical Sub Area

IBTS: International Bottom Trawl Surveys

ICES: International Council for the Exploration of the Sea
IPCC: Intergovernmental Panel on Climate Change

IUCN: International Union for the Conservation of Nature
MEDITS: Mediterranean International Bottom Trawl Survey
MSFD: Marine Strategy Framework Directive

OSPAR: Convention for the Protection of the Marine Environment of the North-East Atlantic
PT-IBTS: International Bottom Trawl Survey in Portugal
SP-NORTH: Spanish North Coast Bottom Trawl Survey

SST: Sea Surface Temperature

VMS: Vessel Monitoring Systems


https://scholar.google.it/scholar_url?url=https://www.alr-journal.org/articles/alr/pdf/1999/03/alr9224.pdf&hl=it&sa=X&ei=lkX4ZbLgOtOcy9YP5MinkAk&scisig=AFWwaeagnjn2P-niawPS0fB1PMlf&oi=scholarr
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2. Introduction
2.1 Background and overview

We are currently experiencing a rapid and accelerating loss of biodiversity worldwide, largely
due overexploitation, habitat loss and climate change (Butchart et al., 2010; IPBES, 2019; Lee
etal., 2023; Pimm et al., 2014). Global warming has also caused shifts in species distribution,
primarily towards higher latitudes, as species follow their thermal niche (Dulvy et al., 2008;
Freeman et al., 2018; Pinsky et al., 2013). The rate of extinctions and distributional shifts varies
between taxa (Perry et al.,, 2005; Poloczanska et al., 2013), suggesting that community
composition, as well as the structure and functioning of ecosystems may be profoundly
altered (Harley et al., 2006). Consequently, understanding the key drivers and underlying
assembly processes determining species distribution and composition is essential to
anticipate the effects of a changing environment on biodiversity and ecosystem functioning
(Harley et al., 2006; McGill et al., 2006; Micheli et al., 2017; Mouillot et al.,, 2013).
Furthermore, more accurate predictions of biodiversity changes may allow us to evaluate and
devise effective management actions to halt the current loss of biodiversity worldwide (Mace
et al., 2005; Pimm et al., 2014). The accomplishment of this ambitious policy goal is regarded
to be achievable through an effective and well-connected system of protected areas jointly
covering 30% of the land and ocean space (Convention on Biological Diversity, 2021; European
Commission, 2020; Hermoso et al., 2022). However, the designation of protected areas,
especially towards “areas of particular importance for biodiversity” (European Commission,
2020) needs to be based on a suite of indicators reflecting the multiple facets of biodiversity
(Cavender-Bares et al., 2020; Pereira et al., 2013). This requires robust modelling frameworks
capable of mapping the status and trends in key biodiversity indicators to inform decision-
makers and managers (Jetz et al., 2019), while at the same time providing improved process
understanding of the underlying drivers and community assembly processes determining
patterns and changes in the distribution and composition of marine communities. In the
following sections we will briefly introduce: (i) the field of biodiversity and the key indicators
in place to represent this diversity; (ii) the concept of community assembly rules underlying
biodiversity; and (iii) the modelling frameworks in place to provide indicators while addressing
the underlying drivers and community assembly processes.

Essential Biodiversity Variables
(EBVs)

Species-focused EBV classes Ecosystem-focused EBV classes
Vaviables measwing an altribute of a collection of organisms Vaviables measuring an alfribute of a colfection of organisms
groupexdt primaniy by species identity grouped primanly by location

1 |
I l l I

4

**

2

&

.

Genetic Specles Community Ecosystem Ecosystem
Composition Populations Specles Traits Composition Structure Function
Variables measuring | | Variables measuring ; Varables measuring | | Variables measuring | | Variables measuring
genetic diversity species distribution Varfables measunng the colleclive diversity| | structural atinbutes | | funchional altributes
within species and abundance traits of species of organisms within of ecosystems of ecosystems
ecosystems

e_’l

Figure 2.1. Essential Biodiversity Variables and their categories (source: Cavender-Bares et al. 2020).
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2.2 Biodiversity: from definitions to indicators

The variety of life on Earth, defined by the term biodiversity, spans diverse levels of
organization, encompassing genes, species, traits, communities, and entire ecosystems
(Rawat & Agarwal, 2015). This manifestation of biological diversity occurs within specific
spatio-temporal contexts, reflecting the complexity of a multifaceted concept. Therefore,
when addressing biodiversity, we delve into a comprehensive concept that embraces multiple
perspectives and dimensions. Traditionally, biodiversity has been quantified by assessing the
number and identity of species within an ecosystem. However, contemporary ecology
recognizes that each facet of biodiversity holds significance, offering unique perspectives and
illuminating diverse ecological processes. The complexity inherent in biodiversity poses
challenges in effectively communicating key information and indicators (Magurran & McaGill,
2010), potentially leading to misguided management and conservation efforts. Therefore,
establishing a common language for sharing biodiversity knowledge is crucial for managers,
researchers and stakeholders in order to optimize resource utilization (Jetz et al., 2019;
Pereira et al., 2013). More specifically, we require a consistent framework for characterizing
biodiversity that better facilitates the monitoring process, and the integration and sharing of
data and outputs across different habitats, regions, and over time (Navarro et al., 2017). To
that end, the Essential Biodiversity Variables (EBV) (Pereira et al., 2013) provide a conceptual
framework that aims to clearly identify key biodiversity indicators that can be easily
implemented, harmonized and that facilitates communication, among scientist but also with
institutions. The EBV comprise six classes of variables that describe different aspects of
biodiversity, such as genetic composition, species populations, species traits, community
composition, ecosystem structure and ecosystem function (Figure 2.1). These are a set of
biological indicators complementary to each other that allow detection and evaluation of
patterns, changes, trends and processes in biodiversity (Pereira et al., 2013). The EBVs act as
the guiding framework for B-USEFUL when selecting and modelling biodiversity indicators.

Regional species pool
e
Ve S @
g

! "*&(
L
D —

———TTTEC

Community A Community B

- ;—.";;‘4--
WD —— B

< ~aglie-’

Low trait variation High trait variation

!

Figure 2.2. lllustration of the community assembly rule concept where species from a regional pool are selected
through a filtering process conditioned on their traits. (Adapted from Mouillot et al., 2007).
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2.3 Community assembly rules

Patterns and changes in biodiversity emerge from diverse processes operating across various
scales. To effectively manage natural areas and allocate resources for conservation, it is
imperative to comprehend the inherent dynamics of these processes and their role in shaping
natural communities. Once we are able to disentangle the dynamics of these processes, we
can study, understand and anticipate the potential impacts of stressors on biodiversity, such
as climate change. The community assembly processes framework is one of the main standing
ecology theories. The assembly processes theory describes that the communities that we
observe in nature are determined by the joint action of a set of filters, which act at different
spatio-temporal scales (Figure 2.2). From a global pool of species, the evolutionary history and
the dispersal capabilities of such species will determine a subset that is able to reach a certain
region (Cadotte & Tucker, 2017; Keddy, 1992). Then, from the regional pool of species, those
that are not adapted to the specific abiotic conditions of the region (i.e., the environment) will
be filtered out. Furthermore, biotic interactions will modify the subset of species that have
gone through the environmental filter, either excluding species through competitive
interactions, or including them through facilitative processes (Bruno et al., 2003; Diamond,
1975; Zobel, 1997). The set of species that has gone through all the filters will comprise the
local pool of species and thus the actual assemblage of species that we observe in a specific
time and location. Traditionally, the study of the assembly processes has been centered on
the taxonomic identity and diversity of the species forming communities. However, what
determines if species can adapt to the local environment, how they interact with other
species, and their specific dispersal capabilities are all linked to their functional characteristics,
their so-called traits. The above-described filters will exclude species that lack certain traits
(or their combination) and are therefore poorly adapted to the specific local conditions
(Gotzenberger et al.,, 2012; Keddy, 1992; Zobel, 1997). Moreover, this trait perspective
enables to find rules that determine community composition and structure between
communities with completely different species, enabling to make comparisons and
predictions (Keddy, 1992; McGill et al., 2006).

Anthropogenic activities have an impact on the filtering process of the community assembly
rules. For instance, climate change is modifying the environmental characteristics of the whole
Earth system through e.g., warming, which directly affects the local pool of species as they
follow their thermal niche towards higher latitudes or deeper and colder waters (Dulvy et al.,
2008; Perry et al., 2005). A second example is the introduction of non-indigenous species (NIS),
which can lead to competitive exclusion of some native species (Clavero et al., 2022; Thomsen
et al., 2014). Lastly, habitat destruction can combine the effects on both environmental and
biotic filtering through the modification of the physical conditions of a community such as the
habitat complexity. For instance, if the habitat is formed by an organism (e.g., biogenic reefs),
its destruction can have severe implications for species interactions if there were some
dependencies, but also leaving a bare substrate that can now be colonized by other habitat-
forming species (Stachowicz et al., 2007). A better understanding of the processes and
underlying drivers that shape marine communities can improve our knowledge on marine
ecosystems and how to better manage and conserve them and their services (Thompson et
al., 2022). Species distribution models can be useful tools that, when applied to the extensive
datasets available in time and space, can reveal relevant insights on these processes at both
single-species and whole-community levels (Brown, 2014; Ovaskainen et al., 2017; Thuiller,
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2015). Moreover, the inclusion of traits in modelling exercises can also shed light on trait-
environment relationships within communities and may inform about some mechanisms
driving community composition and changes. Such modelling tools can produce predictions
on how single species, and whole communities, will change under certain climate change
scenarios, which can provide important knowledge for management and conservation (Botkin
et al., 2010; Franklin, 2023; Urban et al., 2016). This can in fact allow us to anticipate future
situations and take the necessary actions for safeguarding healthy ecosystems which can
sustain the goods and services that humankind benefits from. Below we will provide a brief
background of such models and their application within B-USEFUL.
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Figure 2.3. A conceptual figure outlying the input and output to joint species distribution models used to improve
our understanding or drivers and community assembly rules, while at the same time providing estimates of EBVs
relevant for assessing the status and trends in biodiversity. (From: Jetz et al. 2019).

2.4 Joint species distribution models

Species distribution models (SDMs), also known as ecological niche models or habitat models,
are a widespread tool used in ecology to understand and estimate the relationship between
species occurrence or abundance (or biomass) and environmental conditions, i.e., represent
the species realized niche. There are many different methods for performing SDMs (e.g.,
Generalized Additive Models, Random Forest, Support Vector Machines) each with their
advantages and disadvantages (Yates et al., 2018). Moreover, SDMs allow predicting species
occurrence or abundance under certain environmental conditions, which can be useful for
exploring the outcomes of specific scenarios (e.g., climate change). When the models for
making predictions, it is important to test for its predictive power, i.e., how good does the
model predict for data that has not been used to fit the model (Charney et al., 2021; Petchey
et al.,, 2015; Yates et al., 2018). A typical approach for that is to perform a k-fold cross-
validation (Roberts et al., 2017). For instance, in a 2-fold cross-validation, the available data
would be divided into two sets, one for fitting or training the model (training data) and one
for testing its predictive performance (testing data). To assess the predictive performance, the
fitted model is used to predict e.g., species occurrence under the specific environmental
conditions of the testing data, and then such predictions are compared to the true known
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occurrences. The process is then repeated but the data that was used for training in the first
fold is now used for testing and vice versa. Traditionally, community predictions have been
addressed by combining (i.e., stacking) the single-species predictions from SDMs (Grenié et
al., 2020). This approach models species individually and thus assumes that they have
independent responses to the environment (Guisan & Rahbek, 2011).
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Figure 2.4. Key inputs to the HMSC modelling framework used in B-USEFUL. The occurrence data (denoted as
the Y matrix) includes the occurrences of the species recorded in a set of temporal and/or spatial sampling units.
The environmental data (denoted as the X matrix) consists of the environmental covariates measured over the
sampling units. The traits data (denoted as the T matrix) consists of a set of traits measured for the species
present in the Y matrix. To account for the phylogenetic dependencies among the species, we can include a
fourth matrix consisting of the phylogenetic correlations among the species (denoted as the C matrix). The
spatiotemporal context includes location and time information about the samples. (From Ovaskainen et al.
2017).

A more recent development in statistical modelling are the Joint Species Distribution Models
(JSDMs), which unlike SDMs consider all species simultaneously and account for the
multivariate nature of biological communities (Figure 2.3). There is a wide variety of JSDM
frameworks (e.g., HMSC, BORAL, JDSDM, GJAM, GLLVM, ANN) with different implementation
and statistical foundations (Bourhis et al., 2023; Clark et al., 2017b; Hui, 2016; Niku et al.,
2019; Ovaskainen & Abrego, 2020; Thorson et al., 2016). The Hierarchical Modelling of Species
Communities (HMSC) is a JSDM framework fitted with Bayesian inference (Figure 2.4), and
conceptually and theoretically rooted on the community assembly processes (Ovaskainen &
Abrego, 2020). The framework can incorporate random effects which capture the signal from
processes such as biotic filtering, dispersal limitation and environmental filtering not included
in the fixed effects, which usually include the environmental predictors. The random effects
can be defined by a spatio-temporal structure, aiming to capture processes at a given scale,
and are computed through latent variables (similar to a PCA ordination) that can yield a

13



=J/ Project: B-USEFUL, EC HEU Grant No. 101059823

species-to-species residual association matrix. This association matrix reflects co-occurrence
patterns of the species within the community that cannot be explained by the environmental
niche, i.e., the fixed effects. Consequently, a positive association between two species’
occurrence indicates that those species co-occur more often than expected after considering
their environmental niche. Whether the underlying process that leads to such pattern is biotic
filtering, dispersal limitation or unaccounted environmental filtering in the fixed effects,
cannot be disentangled with JSDMs. This is not a shortcoming of JSDMs as such, but rather a
result from the type of data used. Nonetheless, the incorporation of such random effects can
provide relevant information on potential underlying processes and puts the understanding
and knowledge that we have from species niches into perspective (Ovaskainen et al., 2017).

Another interesting feature from HMSC is that it enables including information on species
traits. Incorporating traits into the model, not only allows identifying trait-environment
relationships, but it actually improves the model performance for some species, typically rare,
as it allows information to be shared across species (Norberg et al., 2019; Ovaskainen &
Soininen, 2011). In a study comparing the predictive performance of different modelling
frameworks (i.e., different stacked SDMs and JSDMs) HMSC was consistently ranked among
the best performing, especially when rare species were considered (Norberg et al., 2019).
Lastly, HMSC can also incorporate information on species phylogenetic relationship, which
accounts for the non-independence of traits among species, i.e. closely related species are
likely to share more similar traits than non related species. A strong phylogenetic signal in the
model is indicative of a common response towards the environment of closely related species.
Hence, following the niche conservatism theory the presence of a phylogenetic signal signifies
that there are traits that have not been included in the model that show some relationship
with the environment of the studied community. Similar to random effects, the specific traits
associated with this signal cannot be disentangled with this method, but finding a
phylogenetic signal can highlight the need for further research into trait-environment
relationships and generally indicates that closely related species share common responses to
the environment, opening avenues for targeted conservation strategies.

2.5 Application of other data driven approach for biodiversity assessments

While the application of SDMs and JSDM can provide a means to assess and predict patterns
and changes in overall biodiversity, data driven approaches based on rarefaction can offer an
alternative framework to quantify the multidimensional and scale-dependent properties of
biodiversity, including alpha-, beta- and gamma-diversity (i.e. sample-level species richness,
regional differences in species composition between samples, and regional species richness,
respectively; Chao et al., 2014; Chao et al. 2023; Thompson et al. 2021). Since data-driven
studies have previously been carried out and published by partners in many areas, such as the
Barents Sea, North Sea and Baltic Sea (e., Wiedmann et al 2014; Pecuchet et al. 2016; Dencker
et al. 2017) we present results from areas and/or organism groups that have not been
extensively featured in such previous work. More information on the methods and derived
results from these studies are presented in section 4.
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2.5 Application of species distribution modelling in B-USEFUL

The above-mentioned modelling frameworks were used within B-USEFUL to improve our
process understanding of drivers and assembly rules affecting past and current distribution
and composition of marine communities, as well as assess the current status and trends in
biodiversity indicators throughout European Seas (Figure 2.5). While the primary focus is on
demersal (bottom-living) fish and benthic invertebrates that a more place bound and
therefore impacted by spatial management actions (e.g., MPAs and other trawling
restrictions), the work presented include also examples of cephalopods, as well as plankton.
In the following sections 3-4 we will describe the collective efforts of partners setting up,
parameterizing and validating JSDMs under task 3.1 on the basis of data collected and
standardized through WP2. Moreover, we present and discuss pattern and changes in multiple
biodiversity indicators, reflecting both species and community-level EBVs estimated for each
area and organism group in question. We acknowledge that differences among these EBVs
may challenge end-users and managers involved in MSP and MPA planning, especially since
hotspots or broader regions of “high biodiversity” may seem contingent on the set of
indicators and metrics considered. Hence, we advocate a broader and holistic perspective
aiming to embrace this complexity when identifying candidate locations and areas for
protection (especially under WP5-WP6). This can involve the joint considerations across a
suite of EBVs, combined with more composite metrics and indicators simultaneously
accounting for richness, abundances and traits, such as Hill numbers (Hill 1973; Chao et al.,
2014; Chao et al. 2023) that are readily available from model outputs, but not presented in
this particular report. Specific details and information regarding model diagnostics etc are
provided in the associated appendices.

- Phytoplankton
Zooplankton

Benthos
Fish
Cephalopods

Figure 2.5. Map of European Seas including case study areas where JSDMs (solid circles) and/or data analysis
(dashed circles) featured within this report present underlying drivers and processes of species distributions, as
well as derived patterns and changes in biodiversity indicators across organism groups (colours). While the
primary focus of the B-USEFUL project is on marine fish and benthic invertebrate communities, some of the
modelling activities include also cephalopods and plankton.
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3. Summary of model results across areas
3.1 North East Atlantic fish model

Authors: Marcel Montanyés, Benjamin Weigel, Federico Maioli, Gleb Tikhonov, Pieter Daniél
van Denderen, Otso Ovaskainen, Martin Lindegren

3.1.1. Study area and data availability

We gathered a comprehensive data set on fish species distribution and biomass from 13
scientific bottom-trawl surveys conducted across the North and North-east Atlantic Ocean
(Appendix 1; Table S1). The data set encompass 90,029 unique hauls spanning 33 years
(1989-2021), thus capturing the active period for most surveys and providing an extensive
spatio-temporal coverage of our study area (Figure 3.1.1). We focused our analysis solely on
fish taxa (i.e., Elasmobranchii, Actinopteri, Holocephali, Myxini, Petromyzonti and Teleostei)
identified at the species level and that exhibited a minimum prevalence of 0.1% (i.e., > 90
occurrences), resulting in a selection of 151 species. The species names were cross-
referenced and updated using the World Register of Marine Species (WoRMS Editorial Board
2022). For each of the hauls we recorded the presence-absence of species, as well as their
biomass standardized for sampling area (km?) and trawl gear catchability following
methodologies detailed in previous studies (van Denderen et al. 2023; Maureaud et al. 2019;
Walker et al. 2017).
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Figure 3.1.1. Position of all unique hauls from the different surveys performed in the North East Atlantic model
domain between 1989 and 2021.

To account for functional (trait) aspects of biodiversity, we selected 6 traits that broadly
represent the life history, reproduction, morphology and diet of species (Dencker et al.
2017) following a formal framework developed for other marine organisms (Litchman,
Ohman, and Kigrboe 2013). Trait information was retrieved from the database by Beukhof
et al. (2019). The life history of each species was characterized by two parameters: age of
maturity (in years) and the von Bertalanffy growth coefficient K (measured in year?), while
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the reproductive traits were represented by offspring size, i.e. egg diameter (measured in
mm). Morphological characteristics were assessed through maximum length (in cm) and the
caudal fin aspect ratio as a proxy for mobility. Lastly, we considered diet by including the
trophic level of each species. To represent the environmental conditions at each unique
haul, we retrieved environmental and physical variables from the model re-analysis products
of the NEMO-MEDUSA model (Gurvan et al. 2022; Yool et al. 2013). This provided us with
surface and bottom details concerning temperature (2C), salinity (PSU), detritus
concentration (mmol N per m3), chlorophyll a concentration (Chl a; mmol N per m3) and
dissolved inorganic nitrogen concentration (DIN; mmol N per m3), as well as depth (m).
Additionally, we computed the annual standard deviation for temperature, salinity, and Chl
a at each location, as a proxy for seasonal variation (Beukhof et al. 2019; Dencker et al.
2017; Maureaud et al. 2019). Due to the lack of available long-term data on fishing effort
throughout the area, the potential effects of commercial fishing were not explicitly
accounted for. However, previous large-scale studies on marine fish communities in the area
found no, or only weak effects on the species distribution and community trait composition
(Beukhof et al. 2019; Dencker et al. 2017). After checking for potential collinearity we
omitted highly correlated variables, i.e., with Pearson coefficient > 0.7 (Appendix 1; Figure
S1). The final set of environmental covariates comprises sea bottom temperature (SBT), SBT
seasonality, sea bottom salinity (SBS), SBS seasonality, seafloor detritus, surface DIN, surface
Chl a, surface Chl a seasonality, seafloor Chl a seasonality, and depth.

3.1.2. Model fitting, validation and predictions

We employed HMSC to model the fish communities, treating each unique sample event as a
response variable. Given the zero-inflated nature of the data, we adopted a hurdle
approach. This involved utilizing one model for presence-absence (probit regression) and
another model for biomass conditional on presence (log-linear regression). As fixed effects
we incorporated the environmental covariates detailed above, including quadratic terms for
sea bottom temperature (SBT) and sea bottom salinity (SBS) to account for potential non-
linear species' responses. To account for potential seasonal differences in distribution and
biomass (i.e., linked to migrations and spawning) we further included spring/summer and
autumn/winter as a fixed factor. In addition to the fixed effects, the models encompassed
spatially- (Ovaskainen et al. 2016) and temporally (yearly) structured latent variables. Spatial
units were represented by hexagonal cells (N=574 cells), each covering an area of 7,774 km?.
To determine the relative importance of the environmental covariates we partitioned the
explained variation among the fixed and random effects (Ovaskainen et al. 2017; Ovaskainen
and Abrego 2020). The model was fitted with four Markov chain Monte Carlo (MCMC) chains
taking 250 samples per chain, resulting in 1,000 posterior samples. The thinning applied was
specific to each model with the aim of achieving a good model convergence with a
reasonable use of computational resources. We assessed MCMC convergence by examining
the potential scale reduction factors (PSRFs; Gelman and Rubin 1992) of model parameters
where values <1.1 indicate satisfactory convergence (Tikhonov et al. 2020). To assess the
predictive performance of our models we partitioned the data into three decades (1989-
1999, 2000-2009, 2010-2021) and trained separate models on each decade. To evaluate the
explanatory power of these trained models, we employed metrics such as AUC and Tjur R2
for species presence-absence, R2 for biomass conditional on presence, and root mean
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square error (RMSE) for both (Ovaskainen & Abrego, 2020). Subsequently, we tested the
models on the remaining decades to assess their out-of-sample predictive performances.

After model diagnostics and cross-validation we computed a suite of six complementary
EBVs based on model predictions of species occurrence and biomass across locations and
years. The selected set of EBVs aim to represent multiple aspects of biodiversity (Pereira et
al. 2013), including taxonomic and functional richness, evenness and dispersion. To reflect
the taxonomic richness of communities the total number of species in a given location was
calculated based on the maximum probability of occurrence of a given species throughout a
year, where monthly probabilities equal or higher than 0.5 were considered to represent
presence. The same approach was used for computing richness of threatened species,
classified as Vulnerable, Endangered or Critically Endangered (IUCN 2023). Species lacking
classifications were assigned as “Not evaluated”. To account for differences in species
evenness we calculated Pielou’s evenness using the mean annual estimates of species
biomasses in each location. To calculate the functional diversity indices we computed a
multidimensional space with a PCoA based on trait-based (Gower) distances (Mouillot et al.
2013). We then used the first 5 PCs (cumulative explained variance of 82%) to compute the
functional richness, evenness and dispersion for each year and location. These represent the
proportion of functional space filled by the species in the community, the regularity of
biomass distribution in the functional space, and the biomass-weighted mean distance to
the biomass-weighted mean trait values of the community, respectively (Mouillot et al.
2013). Taxonomic EBV were carried with ‘vegan’ package (Oksanen et al. 2022), and
functional EBVs with ‘mFD’ package (Magneville et al. 2022), while the species conservation
classifications were retrieved with the ‘rredlis' package (Gearty and Chamberlain 2023) and
complemented with information from the website (IUCN 2023).

Table 3.1.1. Models’ explanatory (diagonal) and predictive (off-diagonal) power for occurrence and biomass
models. Columns indicate the training decade and rows the testing decade. The right-most column indicates
the explanatory power for the whole-period model fitted on all years.

; Training decade
Model Testing Whole period
decade 1990 2000 2010
1990 0.90 0.87 0.86
Occurrence

2000 0.88 0.91 0.90 0.91

(AUC)
2010 0.86 0.89 0.91
1990 0.23 0.13 0.14

Biomass
2000 0.13 0.22 0.16 0.21
(R?)

2010 0.11 0.15 0.22

3.1.3. Model diagnostics and performance

The MCMC convergence for the whole-period and decadal models was overall satisfactory,
indicated by the mean of the PSRF being <1.1 (Appendix 1, Figure S2-S3). In terms of
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explanatory power, the occurrence models showed high performance overall, indicated by
AUC values equal to or exceeding 0.9 for all decadal models (diagonal in Table 3.1), as well as
for the whole-period full- (0.95) and environment-only (0.91) models. Conversely, the biomass
models show more moderate explanatory power with R? values amounting to >0.22 for the
decadal models, and 0.34 and 0.21 for the full and environment whole-period models,
respectively. The decadal cross-validation routine shows high predictive performance for all
occurrence models, indicated by AUC values ranging from 0.86-0.90 for the testing decades
not used for model training (off-diagonal in Table 3.1.1). Conversely, the biomass models
demonstrate considerably lower predictive power for decades used for testing with R2 values
ranging from 0.11 to 0.16 (off-diagonal in Table 3.1.1).
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Figure 3.1.1. Variance partitioning of fixed (blue) and random (red) effects for the full (left) and environment-
only models (right) for occurrence (top) and biomass (bottom). The mean value for each violin plot is denoted
by a black dot, with values indicated below.

The variance partitioning for the environment-only models show that temperature- and
productivity-associated covariates explain most of the variation in species distributions and
biomass (Figure 3.1.2). For the full models more than half of the variance is instead attributed
to the spatial and temporal random effects. This has direct implications for model forecasting
since random effects are assumed to remain constant during predictions (Ovaskainen &
Abrego, 2020). This means that even in the presence of pronounced environmental changes,
model predictions of species distributions will be more static and less suitable to represent
species range shifts and changes in overall composition and diversity. Hence, since both
MCMC convergence and performance of the environment-only models was equal to, or even
better compared to the considerably more complex and computationally demanding random
effect models we decided to present results and predictions exclusively on the basis of the
environment-only models.
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Figure 3.1.3.1.3). Notably, over 60% of species exhibited a positive linear response to SBT, but
a negative response to the quadratic term (SBT2). Similar responses were observed for SBS
and its quadratic term. This indicates that a majority of species demonstrate a bell-shaped
response to temperature and salinity, albeit with different peak values and spread. This in turn
reflects the different environmental niches of marine fish species (i.e., warm- vs cold-water
taxa), both in terms of their optimal conditions, but also the width and degree of tolerance,
notably to temperature (Magnuson, Crowder, and Medvick 1979; Portner and Farrell 2008;
Stuart-Smith, Edgar, and Bates 2017). Among the other environmental covariates, the
proportion of species displaying a negative response to SBT seasonality, Chl a surface
seasonality and depth surpassed those displaying a positive relationship. This indicates that
most of the species considered prefer more stable environments with less seasonal changes,
which corroborates previous findings on the role of seasonality and depth as primary filtering
mechanisms determining fish community structure (Beukhof et al. 2019; Pecuchet et al. 2017).
In terms of the biomass model the proportion of species showing a positive or negative
response to the environmental covariates was more balanced. However, a considerably larger
number of species demonstrated no significant relationships, as expected from the much
weaker explanatory power of the model.
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Figure 3.1.4. Mean estimates of multiple EBVs, including species richness and evenness (A, B), the number of
threatened IUCN taxa (C), as well as the functional indicators of richness, evenness and dispersion (D-F)
throughout the time period from 2000-2016.

3.1.5. Patterns and trends in biodiversity

The overall indicators of taxonomic and functional biodiversity estimated from model
predictions of species occurrence and biomass combined with traits show marked spatial
variation among the set of EBVs (Figure 3.1.4). In terms of species richness, we found the
highest values in the Celtic Sea and Bay of Biscay, as well as the central North Sea, while the
more northern areas, including the eastern Barents Sea, Iceland and Greenland show
generally lower number of species. However, with regards to taxa deemed as threatened the
above-mentioned areas around Greenland, as well as the Norwegian Sea and southern
Barents Sea show relatively higher values, indicating the presence of more vulnerable species,
primarily elasmobranchs in these areas. The presence of such shark and ray species,
possessing traits and life-histories that are different from bony fish (Pecuchet et al. 2017) is
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also evident in terms of the overall functional richness, showing higher values in the same
areas. In terms of taxonomic and functional evenness, the patterns are largely different from
richness with highest values in the northern North Sea, Norwegian Sea, as well as Iceland and
the Celtic Sea. Finally, functional dispersion, reflecting the spread of functional traits among
species in the communities demonstrate rather similar values throughout the area (i.e.,
ranging between 0.5-0.7), but with a slight tendency towards higher dissimilarity on the
continental shelf breaks, as well as the southern North Sea. The pronounced spatial variation
in mean biodiversity indicators is also evident in terms of recent temporal trends (Figure
3.1.5). More specifically, we observe a slight increase in richness, including both taxonomic
and functional, as well as the number of threatened taxa throughout the area, except the Irish
Sea, southern North Sea and the continental shelf breaks towards deeper areas. The trends in
taxonomic and functional evenness and dispersion are more variable with fine-scaled
structuring of areas with either increases or decreasing trends. This in turn reflect the complex
underlying changes not only in species composition, but also in terms of their relative
biomasses act in both time and space.
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3.1.6. Summary

Our large-scale modelling study of fish communities across the Northeast Atlantic shows that
environmental filtering, primarily related to temperature and productivity, explains a large
part of the variance in species distributions and community composition. This aligns with
previous studies on key drivers and determinates of marine fish community structure in the
area and beyond (Dencker et al. 2017; Beukhof et al. 2019b). Our study also demonstrates
that model performance based on the set of environmental covariates included is rather
robust across different decades used for training and validation. This indicates that the
environmental niches of species are generally well described and parameterized within the
models, at least to the extent that species distributions can be predicted in time periods not
used for training. The overall performance and explanatory power of the models are worse in
terms of biomass predictions, likely due to an inadequate representation of key processes that
regulate the productivity and population dynamics of species, notably growth, reproduction
and survival. However, the lower performance of predicting biomass is likely less of issue in
terms of overall biodiversity predictions. This because the indicators rely either on presence-
absence predictions only (e.g., richness), or account for relative biomasses, rather than the
absolute values predicted by the model. Hence, if the proportion of abundant or rare species
remain well described the associated indicators relying on relative biomasses (e.g., evenness
and dispersion) are likely robust to such uncertainty in absolute biomasses. Taken together
we are confident that the models provides not only increased process understanding of the
drivers and assembly rules structuring marine fish communities, but also a means to visualize
and map patterns and changes in overall EBVs relevant for conservation and protection within
the broader context of marine spatial planning.
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3.2 North Sea fish model
Authors: Marcel Montanyes, Benjamin Weigel, Martin Lindegren
3.2.1. Study area and data availability

We collected data from the North Sea International Bottom Trawl Survey (NS-IBTS) from the
publicly available scientific monitoring survey DATRAS, hosted by the International Council for
the Exploration of the Sea (ICES) (www.datras.ices.dk). The temporal span of the data was
restricted to winter and summer surveys (i.e. first and third quarters of the calendar year) for
the period 1986-2016, for which there is a good coverage of the entire study area. Spatially,
the survey is structured on the basis of the ICES statistical rectangles; these are rectangles of
30’ in latitude by 12 in longitude (approximately 56 by 64 km at the centre of the study area)
that divide the area between 36°N and 85°30'N and 44°W and 68°30'E into grid cells (Figure
3.2.1).
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The ICES statistical rectangles gridding system is a formal spatial structure used in fisheries
assessment and marine management advice within ICES. The DATRAS survey identifies
catches at species level whenever possible, which we verified and updated with the World
Register of Marine Species (WoRMS Editorial Board, 2022) whenever needed. Non-fish taxa
were discarded and only organisms identified to species level from the following classes were
kept: Actinopterygii, Elasmobranchii, Holocephali, Myxini and Petromyzonti. The data went
through a quality check procedure where we removed invalid hauls and invalid species
records, which resulted in presence-absence data for 247 species. Furthermore, we excluded
rare species with less than 10 occurrence records in the entire data set (135 species), as well
as those species where no trait or phylogenetic information was available (45 species),
resulting in a total of 67 species stemming from 17319 unique hauls across 170 ICES
rectangles. In addition to the community data we selected eleven traits to represent species’
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morphology, life history, reproduction and diet (Dencker et al., 2017) (Appendix 2; Table S1).
Trait values for each species were collected from available trait data bases (Beukhof et al.
2019b), supplemented with information from recent literature (Coulon et al.,, 2023)).
Morphology of the species was described as body shape, caudal fin shape and maximum
length (cm). Life history was characterized by the age of maturity (years) and the von
Bertalanffy growth coefficient K (year-1), while reproduction was represented by spawning
type, fecundity (number of eggs) and offspring size (egg diameter in mm). Dietary aspects
were captured by diet and trophic level, while the position in the water column was included
to represent a pelagic or demersal life style. Finally, we calculated phylogenetic relatedness
among species using fishtree R package version 0.3.4. (Chang et al., 2019). The availability of
in situ environmental data was limited to a few CTD records (i.e., 15% of the hauls) of
temperature and salinity. Therefore, in order to ensure a complete and consistent coverage
of both physical and environmental covariates across all unique sampling events we used
model re-analysis products from the NEMO-MEDUSA coupled hydro-geochemical model runs
(Yool et al., 2013). The available covariates included both surface and bottom temperature
(eC), salinity (PSU), detritus (mmol N per m3), chlorophyll a (mmol N per m3), dissolved
inorganic nitrogen (DIN; mmol N per m3) and depth. To reflect seasonality in environmental
conditions, previously known to affect fish diversity and dynamics (Beukhof et al., 2019a;
Dencker et al.,, 2017, Maureaud et al., 2019) we calculated temperature and salinity
seasonality as the standard deviation in each corresponding sampling point and year. We
acknowledge that relying on model-derived data may incur potential sources of uncertainty
and errors, at least for variables less well-informed by in situ observations or remote sensing,
such as sea bottom temperature (SBT). However, given the high correlation (r=0.87; p<0.001)
between modelled data and the relatively few available CTD records of SBT measured prior to
sampling we consider the risk of introducing errors as marginal. Moreover, seabed substrate
composition, reflecting the benthic habitats corresponding to each sampling point was
retrieved from EMODnet (European Marine Observation and Data network; www.emodnet-
geology.eu; version September 2021) with a maximum spatial resolution of 4 km?2. Finally, to
account for potential effects of exploitation, annual fishing effort data (fishing hours) per ICES
statistical rectangle for both otter and beam trawlers was extracted (Couce et al., 2020). All
the above-mentioned covariates were tested for multi-collinearity and when a correlation >
0.7 or <-0.7 was found, the variable which was least correlated with other covariates was kept
for the analysis.

3.2.2. Model setup, fitting and validation

To examine the underlying community assembly rules acting on the North Sea fish community
we used the HMSC framework (Ovaskainen et al., 2017; Tikhonov et al., 2020) through the R
package Hmsc version 3.0-11 (Ovaskainen & Abrego, 2020; Tikhonov et al, 2021). More
specifically, we fitted a presence-absence HMSC model with a probit link function using
individual hauls as sampling unit. As linear fixed effects, we included SBT, SBT seasonality, sea
bottom salinity (SBS) seasonality, seafloor detritus, surface chlorophyll a concentration,
surface DIN concentrations, and fishing effort. Since fishing effort was represented by an
annual total, we applied a one-year lag, as the possible effects of fishing are expected to be
appreciable in the following year’s community. Since species usually display optimum ranges
in their environmental niches, especially for temperature, we also included a quadratic term
for SBT in the model. The environmental covariate and trait matrices are scaled by default by
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HMSC so that they have zero mean and unit variance over the columns. Such scaling is invisible
to the user as the estimated parameters are back-transformed to the original scale when
further processed. Finally, we included year and season within year (winter and summer) as
temporal unstructured random effects, and the ICES statistical rectangles as spatially explicit
random effect. All three random effects were treated independently, and the number of
latent variables for each was constrained to a minimum of 1 and a maximum of 5. The model
was fitted assuming the default priors described in Supporting Information of Tikhonov et al.
(2020). Four Markov chain Monte Carlo (MCMC) chains were run, each collecting 250 samples,
resulting in 1000 posterior samples. We applied a thinning of 100, resulting in 37,500
iterations per chain of which the first 12,500 were discarded as burn in. MCMC convergence
was assessed by examining the potential scale reduction factors (Gelman & Rubin, 1992) of
model parameters. MCMC convergence is considered satisfactory if the mean values do not
exceed 1.1 (Tikhonov et al., 2020). The model performance was evaluated as explanatory and
predictive power (through a 5-fold cross-validation) by means of the area under the receiver
operating characteristic curve (AUC), Tjur R2 and root mean square error (RMSE). AUC is
widely used to test SDMs discriminatory ability (i.e., the ability to distinguish between a
presence and an absence) by evaluating its sensitivity (true positive rate) and specificity (true
negative rate) (Fielding & Bell, 1997). Values of 0.5 suggest no discrimination, 0.7 to 0.8 as
acceptable, 0.8 to 0.9 as excellent and > 0.9 as outstanding (Mandrekar, 2010). Likewise, Tjur
R2 provides a measure of the model’s discriminatory ability (Tjur, 2009), while RMSE is a
measure of the accuracy (i.e., how close the measurement are to the true value). We
conducted all statistical analyses in the R software, version 4.2.1 (R Core Team, 2022).

Table 3.2. Mean explanatory and predictive powers (from a 5-fold cross-validation) across all modelled species
measured as AUC, Tjur R2 and RMSE.

AUC Tjur R2 | RMSE

Explanatory power | 0.895 | 0.246 0.199

Predictive power 0.882 | 0.240 0.200

3.2.3. Model diagnostics and performance

The MCMC convergence was satisfactory indicated by the mean (and SD) of the potential scale
reduction factor being < 1.1 for both beta and gamma parameters, reflecting species
responses to the environment and the role of traits, respectively (Appendix 2; Figure S2). The
effective sample size of the MCMC was close to the number of posterior samples, and we can
therefore assume samples not being autocorrelated (Appendix 2; Figure S2). The explanatory
power of the model had a mean AUC of 0.89, Tjur R2 of 0.246 and RMSE of 0.199, while the
mean predictive power (based on a 5-fold cross validation) was of 0.88, 0.24 and 0.2,
respectively (Appendix 2; Table S2). Although there are four exceptions (i.e., Pholis gunnellus
for AUC, and Phycis blennoides, Dicentrarchus labrax and Trachinus draco for Tjur R2, being
the difference of minimal), the explanatory power always outperformed the predicting power,
showing no major signs of model overfitting (Appendix 2; Figure S3). The variance in species’
occurrence explained by the model was attributed to both the fixed and random effects that
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explained on average 35 and 65% of the variance, respectively (Figure 3.2.2). The spatial
random effect was the variable that explained most variability across species, i.e. 50%.
Subsequently, the temperature variables (i.e., SBT and SBT seasonality), explained 25% of the
variance. Finally, year and productivity explained 12 and 7% of the variance, respectively. The
remaining variables, namely season, sediment SBS seasonality and fishing, each explained <
5% of the variance in species occurrences. Nonetheless, the contribution of each of each of
the variables (both fixed and random) varies across species (Appendix 2; Figure S5). The
species responses to the environmental variables were partially explained by the set of traits
included in the model. The proportion of species responses to the different environmental
variables explained by traits varied from a maximum of 61% for the mixed sediment, to a
minimum of 11% for fishing effort (Appendix 2; Figure S4). From the thirteen environmental
variables considered (HMSC treats each sediment type as an individual variable), traits
explained more than 20% of the response in seven, and between 10-20% in six environmental
variables.
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Figure 3.2.2. The proportion of total variation explained by each group of variables across species. The black dot
denotes the mean variance explained by each covariate across the whole fish community, and the actual value
is found below each violin plot. The variables belonging to the fixed and random parts of the model are shown
on the left and right part of the model, respectively, and separated by a dashed line.

3.2.4. Species and trait responses to drivers

There is a great diversity of species-specific responses to the set of environmental variables
included in the model with a high level of statistical support (posterior probability > 0.95),
including negative, positive, or non-significant relationships (Figure 3.2.3), such as the derived
SBT responses of Atlantic cod (Gadus morhua), sprat (Sprattus sprattus) and European eel
(Anguilla anguilla). We found that among the total variance of individual species occurrences,
12.5% could be explained by traits. From the included traits, age at maturity, growth
coefficient K, maximum length, body shape, caudal fin shape, feeding mode and habitat show
a response to at least one of the environmental covariates (Figure 3.2.4). For example, the
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growth coefficient K and age at maturity show a negative response to SBT, while age at
maturity and maximum length demonstrate a negative or positive response to SBT
seasonality, respectively. We found strong support for phylogenetic niche conservatism, with
the phylogenetic correlation parameter rho being 0.82 (95% credible interval: 0.62 - 0.89).
This indicates that a set of phylogenetically-structured traits, beyond the traits already
included in the model, likely influence species niches.
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Figure 3.2.3. Heatmap of estimated beta coefficients indicating positive (red), negative (blue) or no relationships
(blank) of species responses to the set of environmental covariates included (with at least a posterior probability
of 0.95). Species are sorted vertically according to their phylogenetic relatedness.
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Figure 3.2.4. Estimated gamma coefficients (at a posterior probability of 0.95), indicating positive (red), negative
(blue) or no relationships (blank) of traits to the set of environmental covariates included.

3.2.5. Patterns and trends in biodiversity

The overall indicators of taxonomic and functional biodiversity estimated from model
predictions of species and community composition show pronounced spatio-temporal
variation within and between metrics of richness and evenness (Figure 3.2.5). In terms of
species richness, we found the highest values in the central North Sea, reflecting the mixing
zone between the more shallow- and deep water communities dominating in the southern
and northern part, respectively (Dencker et al. 2017). The geographic separation is also
evident with regards to the Shannon index, showing communities with a more even
distribution of abundances in the deeper northern part. The geographic patterns above are
broadly reflected in terms of functional indicators, albeit with a less marked differences
between areas, such as the more uniform distribution of functional richness. This highlights
that while the number of species may differ between areas, the trait composition is more
conserved (Dencker et al. 2017; Beukhof et al. 2019b). Nevertheless, the highest values
observed across the central part of the area indicate that the higher number of species also
lead to a more diverse community in terms of species traits. However, harbouring a higher
trait richness does necessarily lead to a more uniform distribution of abundances, as indicated
by the somewhat opposite pattern shown for functional evenness. Finally, the overall patterns
described above are fairly consistent over the recent time period considered, albeit with a
slight contraction of the area of high species richness in the central North Sea in recent years.
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3.2.6. Summary

Our modelling study shows that environmental filtering, primarily related to temperature and
seasonality, explains a large part of the variance in species distributions and community
composition. This supports previous findings on drivers and determinates of marine fish
community structure in the area and beyond (Dencker et al. 2017; Beukhof et al. 2019b). Our
study also demonstrates that there are other assembly processes with a strong spatial
structure playing a role in shaping these communities. Notably, we argue that biotic factors
are likely important in this regard, but call for further research to better understand the
underlying interactions involved. Furthermore, we stress the importance of accounting for
species traits since their inclusion improves the mechanistic understanding on species
responses to environmental change, while providing model predictions of key biodiversity
indicators capable of informing spatial management and conservation efforts, such as the
placement of marine protected areas.
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3.3 Baltic Sea fish model
Authors: Tom Jimenez, Federico Maioli, Marcel Montanyes, Martin Lindegren
3.3.1. Study area and data availability

Fish abundance data was collected from the North Sea International Bottom Trawl Survey (NS-
IBTS) and the Baltic International Trawl Survey (BITS) from the publicly available scientific
monitoring survey database DATRAS, hosted by the International Council for the Exploration
of the Sea (ICES) (www.datras.ices.dk). The data covered available surveys from 1993 to 2021
conducted during the winter, summer and autumn seasons, ensuring complete coverage of
the entire study area ranging from Skagerrak and Kattegat to the Baltic proper (Figure 3.3.1).
Taxa names were checked and verified following the World Register of Marine Species
(WoRMS Editorial Board 2024). Taxa other than fish were excluded, retaining only organisms
identified to species level in the following classes: Actinopterygii, Elasmobranchii, Holocephali,
Myxini and Petromyzonti. Furthermore, we excluded rare species with less than 10 unique
occurrence records in the entire data set. This resulted in a total of 78 species from 12,953
unique hauls. For each of the hauls we recorded the presence-absence of species, as well as
their abundance standardized for sampling area (km?2) and trawl gear catchability following
(Walker et al. 2017; van Denderen et al. 2023).

Figure 3.3.1. Position of all
unique hauls of the bottom-
trawl surveys performed in
the Baltic Sea between 1993
and 2021 ranging from
Skagerrak and Kattegat to the
Baltic proper

In order to represent the broader ecology of species in terms of their morphology, life history,
reproduction and diet we selected 10 ecological traits (Dencker et al. 2017) (Appendix 3; Table
S1). Trait values for each species were collected from available trait data bases (Beukhof et al.
2019; Coulon et al. 2023). The species morphology is defined by body shape, caudal fin shape,
and maximum length (cm). Life history traits include age at maturity (years) and the von
Bertalanffy growth coefficient (K) (year-1). Reproductive characteristics cover spawning type,
fecundity (number of eggs), and offspring size (egg diameter in mm). Dietary factor is
represented by feeding mode while habitat indicates the general position in the water
column. To reflect key environmental conditions affecting fish species distribution and
composition we used the physics and biochemistry reanalysis products of the Baltic
Monitoring Forecasting Centre of Copernicus Marine Environment Monitoring Service
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(BALMFC CMEMS). The reanalysis products are based on the regionally downscaled Nemo-
Nordic general circulation model (Hordoir et al. 2019) coupled with the SCOBI (Swedish
Coastal and Ocean Biogeochemical) biogeochemistry model (Eilola et al. 2009; Almroth-Rosell
et al. 2015). The environmental data extracted from Copernicus (www.marine.copernicus.eu)
include bottom temperature, salinity, oxygen concentration, as well as surface chlorophyll-a
concentration and depth. After checking for potential collinearity among variables (Appendix
3; Figure S1) all were included as candidate predictors in the subsequent modelling.

3.3.2. Model setup, fitting and validation

We used the HMSC framework to investigate drivers and community assembly rules in the
Baltic Sea fish community (Ovaskainen et al. 2017; Tikhonov et al. 2020). HMSC quantifies
variation in species distributions using environmental covariates and random effects, which
capture spatio-temporal patterns and species-specific associations. These associations,
reflecting ecological processes such as dispersal limitation and biotic interactions, are
estimated using latent variables (Ovaskainen and Abrego 2020). We fitted a presence-absence
HMSC model with a probit link function using individual hauls as sampling units. We also fitted
a biomass model conditional on presence, but with the primary purpose to allow calculation
of biodiversity indicators relying on such information. As fixed effects, we included bottom
temperature, bottom salinity, bottom oxygen concentration, surface chlorophyll-a
concentration, depth and season. Since species usually display non-linear environmental
niches, especially for temperature, we also included a quadratic term for temperature and
salinity in the models. Finally, we included year as a temporal random effect, and hexagonal
grid cells (N=47) as spatially random effect. The latter random effect is introduced to
accommodate spatial patterns that remain unexplained by environmental predictors. All
random effects were treated independently, and the number of latent variables for each was
constrained to a minimum of 1 and a maximum of 6. Two Markov chain Monte Carlo (MCMC)
chains were run, each collecting 100 samples, resulting in 200 posterior samples. We applied
a thinning of 1000, resulting in 150,000 iterations per chain of which the first 51,000 were
discarded as burn-in. MCMC convergence was assessed by examining the potential scale
reduction factors (PSRF; Gelman and Rubin 1992) of model parameters where convergence is
considered satisfactory if the mean PSRF values do not exceed 1.1 (Tikhonov et al. 2020). The
model performance was evaluated as both explanatory and predictive power (through a 2-
fold cross-validation) by means of the area under the receiver operating characteristic curve
(AUC), Tjur R? and root mean square error (RMSE).

Table 3.3.1. Mean explanatory and predictive powers (from a 2-fold cross-validation) for the occurrence and
biomass models.

Madel Occurrence Biomass
AUC Tjur R? RIMSE R? RMSE
Explanatory power 0.534 0.258 0.151 0.430 1.208
Predictive power 0.742 0.111 0.1%6 0.216 1.538
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3.3.3. Model diagnostics and performance

The mean PSRF of the fitted gamma parameters was <1.1 for the presence-absence model,
indicating satisfactory convergence (Appendix 3; Table S2 and Figure S2). In terms of the beta
parameters, the values were slightly higher (1.29), indicating poor convergence for some taxa.
The effective sample size of the MCMC was close to the number of posterior samples (200
samples), and we can therefore assume samples not being autocorrelated. These MCMC
convergence statistics indicate a good reliability and validity of our model, which avoids the
need to take more samples. The explanatory power of the model had a mean AUC of 0.93,
Tjur R? of 0.26 and RMSE of 0.15, while the mean predictive power (based on a 2-fold cross-
validation) was 0.74, 0.11 and 0.20, respectively (Table 3.3.1). While the AUC is generally high,
the value of Tjur R? is relatively modest, suggesting a moderate capacity of the model to
explain the variance in the data. Finally, the RMSE value based on cross-validation (0.196) is
slightly higher, indicating a decrease in the accuracy of predictions on unobserved data. The
values for the biomass model are slightly higher.

'

Figure 3.3.2. Variance by species explained by the fixed and random effects included in the model.
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3.3.4. Species and trait responses to drivers

The variance in species’ occurrence explained by the model was attributed to both fixed and
random effects that explained on average 56.5% and 43.5% of the variance, respectively
(Figure 3.3.2). This indicates that most of the explanatory power of the model is
encapsulated by the environmental variables. However, the spatial random effect accounted
for the largest portion of variability across species, explaining 37.5% of the total variance.
Among the environmental covariates, salinity and depth explained 28.7% and 17% of the
variance, while temperature and year explained 6.8% and 6%, respectively. The other
variables, including bottom oxygen concentration, chlorophyll-a concentration and season,
explained ~4% of the variance in species occurrences. Interestingly, the contribution of each
of the variables varied markedly between species. For instance, some species, such as
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Chimaera monstrosa, Echiichthys vipera and Micromesistius poutassou, were almost entirely
explained by the fixed effects, while Hippoglossoides platessoides, Limanda limanda and
Pleuronectes platessa were predominately explained by the spatial random effects.
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Figure 3.3.3. Heatmap of estimated beta coefficients indicating positive (red), negative (blue) or no relationships
(blank) of species responses to the set of environmental covariates included (with at least a posterior probability
of 0.95). Species are sorted vertically according to their taxonomic relatedness.

We observed a wide range of species-specific responses to all the environmental variables
included in the model, including negative, positive and non-significant relationships (Figure
3.3.3). Among the environmental variables, bottom temperature, bottom salinity and depth
show significant beta coefficients for many species, suggesting that these are critical variables
determining the environmental niches for most species in the area. As an example, we found
positive responses of the common and commercially important species herring (Clupea
harengus) and sprat (Sprattus sprattus) to salinity and temperature, while the Atlantic cod
(Gadus morhua) responded positively also to depth and bottom oxygen concentrations. The
species responses to the environmental variables were partially explained by the set of traits
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included in the model. More specifically, the proportion of species responses to the different
environmental variables explained by traits varied from a maximum of 28% for bottom oxygen
concentration, to a minimum of 4% for the winter season (Appendix 3; Figure S3). Among the
ten environmental variables considered, traits explained more than 10% of the response in
four. From the included traits, age at maturity, growth coefficient K, body shape, feeding
mode and habitat show pairwise responses to at least one of the environmental covariates
(Figure 3.3.4). For example, age at maturity shows a positive response to depth and summer
season, while body shape shows a negative response to oxygen concentration. In addition,
demersal and pelagic habitat types seem to react positively to temperature.
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Figure 3.3.4. Heatmap of estimated gamma coefficients indicating positive (red), negative (blue) or no
relationships (blank) of traits to the set of environmental covariates included (with at least a posterior probability
of 0.90).

3.3.5. Patterns and trends in biodiversity

The biodiversity indicators estimated from model predictions of species occurrences and
biomass show pronounced geographic variation within and among indicator (Figure 3.4.5). In
terms of species richness, we found high values in the Kattegat/Skagerrak (~25 species) and a
sharp decrease further south and east into the Baltic proper. The spatial gradient from west
to east is relatively stable over time (Figure 7B), but with slight variations in the intensity and
extent of change, particularly in the Kattegat where an increasing trend of up to 0.2
species/year can be observed. The Shannon index shows a similar spatial gradient with higher
values in the Kattegat and in more coastal areas, while the lowest values are predicted in the
eastern part, especially in the deeper basins of the Baltic proper. Similarly, there is moderate
variation over time with most areas showing no directional (linear) trend. In terms of the
functional indicators (using also trait information in the estimation), we found a rather similar
overall spatial patterns as the taxonomic indicators. More specifically, the Hill’s number 0 was
higher in the Kattegat/Skagerrak, especially in the more coastal areas, while the lowest values
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were found in the deeper basins of the Baltic proper. The temporal trend is rather modest,
indicating only slight changes in trait richness, despite changes in the overall number of
species. Similar to the Hill number the functional richness shows a similar spatial pattern, with
highest values in the deeper areas the entrance to the North Sea. In terms of temporal trends,
we found a positive rate of change in the inner Danish waters and along the Swedish west
coast. With regard to functional divergence, a gradient opposite to that of functional richness
was observed with slight variations over time.

Figure 3.3.5. Spatial patterns and changes in taxonomic and functional biodiversity indicators, reflected by the
mean (left) and linear trend (right) in each variable between 1993 and 2021. The bottom panels show biplots
from a PCA, reflecting the loadings of each biodiversity indicators on the first two axis (PC1 and PC2) while using
means (K) and linear trends (L) as input.
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3.3.6. Summary

Our model predictions highlight patterns and changes in overall biodiversity throughout the
study area, reflected by a complementary set of indicators of taxonomic and functional
diversity. The patterns and trends reflect the underlying changes in species distribution and
biomass in response to climate variability and change, as captured by the parameterized
models. The large-scale spatial patterns of species richness and functional richness are similar
to those observed in previous data-driven studies (Pecuchet et al. 2016). Notably, the most
decisive gradient is that of salinity where areas with low salinity and functional richness can
be explained by the presence of communities made up of species with similar traits, such as
flatfish. Conversely, areas with high salinity and functional diversity include a greater number
of species with more different traits (Pecuchet et al. 2016), which in turn is considered
beneficial for the ecosystem at large (Cadotte et al. 2011). Understanding the environmental
factors that shape species distribution and community composition enables us to predict
changes in overall diversity in response to future environmental change (Mouillot et al. 2013).
This can help us evaluate the effectiveness of conservation and management actions helping
to safeguard biodiversity, notably the designation of an effective and well-connected system
of protected areas jointly covering 30% of the land and oceans (Convention on Biological
Diversity 2021; Hermoso et al. 2022).
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3.4 Baltic Sea benthos model

Authors: Baptiste Degueurce, Federico Maioli, Marcel Montanyes, Daniel van Denderen,
Martin Lindegren

3.4.1. Study area and data availability

We collected available monitoring data on benthic invertebrates’ distribution and abundance
from the International Council for the Exploration of the Sea (ICES) zoobenthos data as
provided by national data submitters for HELCOM (https://data.ices.dk) and from the Swedish
Ocean Archive (https://sharkweb.smhi.se). The data set includes XXX unique sampling events
throughout the time period from 1993-2020 for which we have good coverage in both benthic
communities and environmental data over the study area (Figure 3.4.1). We excluded invalid
samples and discarded species for which no traits data was available, thus limiting the number
of species retained to 143. Furthermore, rare species with less than 100 occurrences over the
28 years of data, and species which were recorded in less than 10 different years were also
excluded, reducing the total number of taxa considered in modelling to 88. The final data set
included both the presence and absence of species per sampling events, as well as their
densities reflected by the ash free dry weight (AFDW) per m2.

Figure 3.4.1. Position of all unique
benthic invertebrate samples
included in the study.
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To represent the broader ecology of benthic species we extracted available trait data from the
online traits data portals WoRMS (https://www.marinespecies.org/), MARLIN
(https://www.marlin.ac.uk/biotic/) and Polytraits (http://polytraits.lifewatchgreece.eu/). For
size and adult lifespan, a number is assigned for each species between 1 and 5 representing
an increasing size category or a life span duration, respectively. For the other traits, each trait
is divided into a number of modalities, reflecting the presence or absence of the given
modality for each taxa considered. All modalities and explanations for the traits are listed in
the supplementary material. To avoid redundancy among traits we excluded highly correlated
traits and thus retained 12 of the modalities present in the trait data set. To reflect key
candidate drivers affecting benthic species distribution we extracted temperature (°C), depth
and salinity (PSU) from the Copernicus physic re-analysis and forecast for the Baltic Sea
(cmems_mod_bal_phy anfc_PT1H-i, https://data.marine.copernicus.eu/). Furthermore, we
extracted oxygen (g per m3) and chlorophyll-A (mg per m3) concentration from the
Copernicus  Biogeochemistry  analysis and forecast for the Baltic Sea
(cmems_mod_bal_bgc_anfc_P1M-m) (Huess et al., 2024). Finally, seabed sediment type and
composition for each sampling site was extracted from EMODnet (European Marine
Observation and Data network; www.emodnet-geology.eu; version November 2024).

3.4.2. Model setup, fitting and validation

To investigate key drivers and assembly process affecting benthic invertebrates we used the
Hierarchical modelling of species communities (HMSC) framework (Ovaskainen and Abrego,
2017). More specifically, we fitted a presence absence model using the “probit” distribution
and a biomass model conditional on presence using log-transformed AFDW as response. Both
models use the assembled environmental conditions depth, bottom salinity, bottom
temperature, mean chlorophyll-a, bottom oxygen, sediment type and gear type as predictors.
The gear type is a fixed effect factor included to account for potential differences in sampling
methods on the observed occurrence or biomass of species throughout the study area. To
account for any unmeasured spatial effects not covered by the set of environmental
predictors, or through biotic associations, reflecting potential interactions we also included a
spatial random effect, representing hexagon grid cells amounting 75 km?. For model fitting
we ran a Markov chain Monte Carlo sampling (MCMC) to explore parameters and estimate
the prior model parameters distribution. The MCMC sampling was configured with a thinning
value (300), a transient value (50) and a sample value (100). This enabled us to reduce
correlation between samples and to evaluate the model convergence using two independent
chains. Furthermore, to evaluate the MCMC chains convergence we used the Gelman-Rubin
diagnostic on two model parameters (B and y) (Brooks and Gelman, 1998). This method
compares the variance between the chains to the variance within the chains. If the potential
scale reduction factor (PSRF) is close to 1, it suggests that the MCMC chains converged well.

3.4.3. Model diagnostics and performance

Mean PSRF (potential scale reduction factor) for the fitted gamma and beta parameters were
<1.1, indicating satisfactory convergence of the model. The run of our cross-validation routine
also provides us with AUC values above 0.9 for the explanatory power and 0.8 for the mean
predictive power. These values are described as good according to Mandrekar (2010).
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Figure 3.4.3. Heatmap of estimated beta coefficients indicating positive, negative or no relationships (red, blue,
white respectively) of species responses to the set of fixed effects of our model with a posterior probability of
0.95.

3.4.4. Species and trait responses to drivers

The variance partitioning shows that the environment is explaining much of the variance,
while the random effects account for only 23% of the total variance explained (Figure 3.4.2).
However, there is considerable variation as some species distributions are fully explained by
the environment (e.g. Potamopyrgus antipodarum), while others are mostly explained by the
random effects (e.g. Nephtys hombergii). Among the environmental covariates, bottom
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salinity and bottom oxygen concentration explains ~45% of the variance, while gear type
explains 15%. The other environmental covariates, including temperature, chl a and sediment
type account for only 12% of the total variance. The species responses to main environmental
covariates show primarily positive saturating relationships to bottom salinity, as indicated by
the positive linear and negative quadratic effect, while for oxygen a majority of positive or
neutral responses are shown (Figure 3.4.3). In terms of the other covariates deemed less
important based on the variance partitioning chl a show primarily negative relationships,
while temperature, depth and sediment type show either positive, negative or non-significant
relationships. In terms of potential trait effects, most of the responses to gear type is
explained by traits (Figure 3.4.4). In addition, the responses of taxa to salinity (21%),
temperature (20%) and chlorophyll-a rate (27%) are conditioned on the set of traits included.
Among the specific pairwise interaction between traits and environmental factors (Figure 4),
feeding mode is mainly responding positively to sediment type and salinity with a positive or
negative response depending on the modality, while the bioturbation is mainly responding to
depth and chlorophyll.
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Figure 3.4.4. Heatmap of the estimated gamma coefficients indicating positive, negative or no relationship (red,
blue, white respectively) of traits to the model fixed effects with a posterior probability of 0.85.

3.4.5. Patterns and trends in biodiversity

The overall biodiversity patterns and changes predicted from the final models demonstrate a
pronounced gradient in species richness with a higher average number of taxa in Kattegat (>25
species), followed by a sharp decline towards the northeast to ~5 taxa on average when
entering the Bothnian Sea (>60°N) (Figure 3.4.5). The same gradient is evident for functional
richness, with high values in the Kattegat and declining values further east and northward.
This general pattern is also visible in terms of functional dispersion, but with relatively higher
values in coastal waters also in the eastern and northern areas, such as along the Finnish coast.
In contrast to the abovementioned indices, the functional divergence, as well as functional-
and taxonomic evenness show patterns deviating from the general west to east gradient.
More specifically, functional divergence show higher values in the Baltic proper and Gulf of
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Finland and moderate to low values in the Kattegat and Bothnian Bay, respectively, while
functional dispersion show higher values both in the western part and the coastal areas in the
northeastern part around Finland. The latter indicates higher mean functional distances
between species in terms of their traits, despite the different number of taxa present in these
areas. Lastly, both evenness indicators show pronounced fine-scaled variability, but with
generally lower values in the Kattegat, as well as deeper areas in the Baltic proper. In terms of
temporal trends in biodiversity indicators throughout the time period, the model predictions
show generally increasing slopes in species richness across the region, while functional
richness, divergence and dispersion show rather stable, or slight overall increases,
respectively. In contrast, both indicators of evenness show a general declining trend
throughout the study area, except for the deeper pars of the Baltic proper where trends are
showing increasing values.
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Figure 3.4.5. Mean (left) and linear trend (right) of some taxonomic and functional biodiversity indicators in the
Baltic Sea between 1993 and 2020.
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3.4.6. Summary

Our model results confirm the importance of environmental filtering channelled through both
salinity and oxygen as a primary community assembly process influencing benthic species
distributions and community composition by favouring more tolerant generalist species
(Tornroos et al., 2015; Gogina et al.,, 2016; Gogina et al., 2020). More specifically, the
significant responses of species to salinity and oxygen are consistent with Remane’s tolerance
curve for brackish and marine water species (Telesh et al., 2011) and corroborate findings by
Diaz & Rosenberg (2008) affirming that highly oxygenated waters support a higher benthic
biodiversity. Taken together, our results highlight the importance of multi-factors gradients
(Levin et al.,, 2009), here reflecting both salinity and oxygen in benthos communities
distribution and diversity in the Baltic Sea (Bonsdorff, 2006). The lower importance of other
variables explaining species distributions, notably temperature, is consistent with previous
studies in the area, indicating that the pronounced salinity gradient may mask potential
temperature effects (Gogina and Zettler, 2010; Gogina et al., 2020), even if such temperature
effects may play a substantial role determining the growth, metabolism and survival of benthic
species.
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3.5 Icelandic fish model

Authors: Francesco Golin, Haseeb Randhawa, Federico Maioli, Martin Lindegren, Julian
Burgos, Ingibjorg G. Jonsdottir

3.5.1. Study area and data availability

The data for this study has been collected through bottom trawling as part of the Icelandic
Groundfish Survey (SMB) and the Autumn Groundfish Survey (SMH), both of which are carried
out by the Marine and Freshwater Research Institute of Iceland (Figure 3.5.1). The temporal
span of the data is 1996 — 2024, while the sampling points span between 62° 12' 50.4" N and
68°19'43.2" N in latitude, 31° 32' 12.6" W and 9° 36' 49.8" W in longitude, and 30-1500 m in
depth. For this study, only data concerning species belonging to the classes Actinopterygii,
Elasmobranchii, Holocephali, Myxinii and Petromyzontii have been considered. The data went
through a quality check procedure during which invalid hauls and invalid species records have
been removed. Additionally, rare species with less than 10 occurrence records over space
(ICES rectangles), time (years), and with less than 1% occurrence in the dataset have been
removed (140 species). Pelagic and bathypelagic species (19 in total) were also removed from
the analysis, as their lower catchability in bottom trawled gear can lead to the
underestimation of their abundance (Walker et al. 2017). The benthopelagic species Clupea
harengus, Cyclopterus lumpus and Mallotus villosus were also removed due to possible large
geographical variability in abundance given by their mobility. Therefore, the analysis included
82 species found in 25 911 samples (Figure 3.5.1).
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Figure 3.5.1. The location of the sampling points around Iceland, and the grid used as spatial random effect in
the models. Red indicates the origin of the samples collected during the SMB, while orange indicates the origin
of the samples collected during the SMH.
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Species abundance was expressed as kg/km?. These estimates of density were calculated using
information on the species-specific number of individuals and length distribution found in
each sample and the species-specific coefficients of the length-weight relationship available
from FishBase (Froese and Pauly 2024). These estimates were then adjusted using coefficients
of fishing gear efficiency provided in the Supplementary Information of Walker et al. (2017).
To characterize species in terms of their morphology, life history, reproduction and diet
(Dencker et al. 2017) we selected 7 ecological traits to be included in the models. Morphology
was described by maximum length (m) and the aspect ratio of the caudal fin, which
constituted a proxy for mobility. Life history was described by the age of maturity (years) and
by the von Bertalanffy growth coefficient (K) (year). Life history was described by the age of
maturity and by fecundity (number of offspring), while dietary aspects were described by the
trophic level. Finally, the position usually occupied in the water column was included as a
categorical variable with three levels: demersal, bathydemersal and benthopelagic. Trait
information was gathered for each species using available datasets (Beukhof et al. 2019,
Thorson et al. 2017) and supplemented with information found in recent literature
(Emblemsvag et al. 2020). If no information could be found for a specific trait, the Genus or
Family average was used. Furthermore, to estimate the influence of taxonomically structured
traits on species niches, taxonomic information was retrieved from WoRMS (Ahyong et al.
2025) and included in the model.

Information on the physical and biogeochemical environment were sourced from data
products by Copernicus Marine (Copernicus Marine Service 2025a and 2025b). These provided
monthly averages of sea bottom temperature (SBT) (°C), sea bottom salinity (/103), chlorophyll
a concentration (at surface, mg/m?3), dissolved oxygen (mmol/m?3), nitrate concentration (at
surface, mmol/m3), phosphate concentration (at surface, mmol/m3), silicate concentration (at
surface, mmol/m?3) and net primary production of biomass (at surface, expressed as mg carbon
/m3/day). The annual standard deviation of sea bottom temperature (SD SBT) (°C) was
included as a measure of seasonality and stability of the environmental conditions at each
sampling location. Information on the site of sampling included depth (m), mean sea bottom
slope for a 5km radius around the sampling site (°), and the mean fishing effort by bottom
trawling for the year past the month of sampling and a 20 km radius. This was expressed as a
ratio between the swept are and the area of a cell, following a methodology akin to the one
found in Gerritsen et al. 2013. Data on sea bottom slope was calculated using bathymetric
information by the R package marmap (Pante et al. 2023) and the package terra (Hijmans
2025), while data on fishing effort was retrieved from logbook data property of the Icelandic
Ministry of Fishery (Fiskistofa 2025). To capture possible variability in occurrence and
abundance due to diel migration, time of sampling (expressed as hours from solar noon) was
included in the models. The above-mentioned environmental covariates were tested for
multicollinearity, and when two variables had a correlation >0.7 or <-0.7, only the one least
correlated with the other variables was kept for analysis (Figure S1). The only exception was
nitrate concentration, which was excluded to avoid overfitting, since chlorophyll
concentration was deemed sufficient to constitute a proxy of primary productivity. Therefore,
the set of variables with limited reciprocal correlation were SBT, SD SBT, salinity, chlorophyll
concentration, oxygen concentration, depth, mean slope, fishing effort, and time from solar
noon.
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3.5.2. Model setup, fitting and validation

To model the response of the selected species to the environment, the hierarchical modelling
of species community (HMSC) framework was used (Ovaskainen et al. 2017). Due to the zero
inflated nature of the data, a hurdle approach was used. This involves producing a presence-
absence model, denominated here as PA model, and an abundance conditional on presence
model, the ABU model. The models were fitted using the default priors reported in the
Supporting Information of Tikhonov et al. (2020). Four Markov chain Monte Carlo (MCMC)
chains were run using the high-performance computing implementation described in Rahman
et al. (2024). Each chain collected 250 samples, resulting in a total of 1000 posterior samples.
We applied applied a thinning of 250, resulting in 93 750 iterations per chain, of which the
first 31 250 were discarded as burn-in. MCMC convergence was evaluated using the potential
scale reduction factor (PSRF) (Gelman and Rubin 1992), and it was considered satisfactory
when it did not exceed 1.1 (Tikhonov et al. 2020). Three species (Centroscyllium fabricii,
Deania calceus, Notacanthus chemnitzii) were removed at this step due to poor chain
convergence for many of their parametres, which affected the overall performance of the
models. As fixed effects we included SBT, SD SBT, salinity, chlorophyll concentration, depth,
mean slope, fishing effort and time from solar noon. Oxygen concentration was ultimately
excluded as its parameter estimates suffered from poor convergence. Anyway, it was deemed
unlikely that oxygen concentration would have influenced the distribution of the chosen
species, as no site had an estimated oxygen concentration close to hypoxic conditions
(commonly defined as concentrations lower than 63 mmol/m?3) (Rabalais et al., 2002), with
the range of available measurements being included between 201 mmol/m3 and 358
mmol/m3. Furthermore, to accommodate non-linear responses in species niches to SBT and
depth, quadratic terms were included for both of these variables. Finally, mean slope was log-
transformed to stabilize variance and ensure model convergence. In addition to the fixed
effects, the models included a spatial and a temporal random effect. The unit of the spatial
random effect was constituted by hexagonal grid cells (n = 30) with a distance of 200km
between their centres (see Figure 3.5.1). The year of sample collection constituted the unit of
the temporal random effect. The random effects were treated independently from each
other. The number of latent variables to be produced by the model was limited to a minimum
of 1 and a maximum of 5. Latent variables are used in the HMSC framework to estimate the
parameters of residual association between pairs of species (Ovaskainen and Abrego 2020).
Model performance was evaluated both as explanatory and predictive power through a 5-fold
cross-validation. The under the receiver operating characteristic curve (AUC), Tjur’s R? and the
root mean square error (RMSE) were used to evaluate the performance of the PA model, while
R? and RMSE were used to evaluate the performance of the ABU model.

3.5.3. Model diagnostics and performance

The mean PSRF was <1.1 for both the PA and the ABU model, for both the beta and the gamma
parameters. Only a few beta parameters were characterized by a PSRF higher than this
threshold — 26 and 2 for the PA and the ABU model respectively, out of a total of 869. The
effective sample size (ESS) of the models was close to the real number of posterior samples
(1000), thus indicating low probability of samples autocorrelation. Nevertheless, some gamma
parameters related to fecundity were characterized by an ESS of 0. Despite these exceptions,
the MCMC convergence statistics indicate a good reliability and validity for the majority of the
models’ estimated parameters. The explanatory power of the PA model had a mean AUC of
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0.93, a mean Tjur R? of 0.37 and a mean RMSE of 0.19. The explanatory power of the ABU
model had a mean R"2 of 0.28 and an RMSE of 0.84. Regarding predictive power, in only two
exceptions — the AUC score of Phycis blennoides and the Tjur R? of Enchelyopus cimbrius — it
outperformed the explanatory power (Figure S4 and Figure S5). In all the other cases the
explanatory power outperformed the predictive power, showing no major sign of overfitting.

3.5.4. Species and trait responses to drivers

The variance in species distribution was explained in part by the fixed effects (69% of the
explained variance of the PA model, and 60% of the ABU model, on average) and in part by
the random effects (31% of the explained variance of the PA model and 39% of the ABU model,
on average) (Figure 3.5.2). In both models the most important fixed effect was depth, with 38
and 23 species for which >50% of the explained variance was attributable to this fixed effect
in the PA and ABU model respectively (Figure S6). Grid cell identity was instead found to be
the most important random effect in both models. Again in both models, SBT was the second
most important fixed effect in explaining species distribution, while annual variation in
temperature (SD SBT) explained a smaller but relevant portion of explained variance — with
peaks of 16% for Centrophorus squamosus and 20% for Rajella fyllae in the PA and ABU model
respectively. There were two main differences between the two models in the levels of
variance explained by the chosen predictors. The first is the greater influence exerted by
drivers related to sea water composition (salinity), seasonality in environmental conditions
(SD SBT), time of capture (time from noon), topography of the sampling site (mean slope)
productivity (chlorophyll) and exploitation levels (fishing effort by bottom trawling) in
determining the abundance of the considered species (Figure 3.5.2). The second is the larger
portion of variance explained by the random effects in the ABU model, indicating that
unmeasured factors correlated with location and year of sample collection were more
influential in determining species abundance than in determining species occurrence.
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Figure 3.5.2. Proportion of the explained variation attributed to each one of the predictors, across species. The
black dot denotes the average explained variation by each predictor (reported at the bottom of each violin plot).
The dashed line separates between the fixed effects (to the left) and the random effects (to the right).
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Figure 3.5.3. Heatmap of estimated beta coefficients indicating whether species response to the chosen
environmental covariates was negative (blue), positive (red), or not statistically significant (<95% posterior
support) (white). The taxonomic tree is displayed, illustrating species’ taxonomic relatedness.

The importance of depth in determining both the occurrence and the abundance of most
species considered in the study is attested by their response to this variable, with the majority
(78 in the PA model and 67 in the ABU model) having a statistically significant response (with
a >95% posterior support) with either the linear term Depth, the quadratic term Depth2, or
both (Figure 3.5.3). Among these, the probability of occurrence of 58 species (PA model) and
the abundance of 51 species (ABU model) were estimated to have a non-linear relationship
with depth, with a species-specific optimal depth at which the highest probability of
occurrence or abundance was estimated to be found (indicated by a positive ‘Depth’ term and
a negative ‘Depth2’ term). SBT was also found to be a strong driver of species occurrence, with
76 species having a statistically significant (>95% posterior probability) relationship with the
variable, while 50 of these were estimated to have a non-linear relationship with a
temperature optimum (Figure 3). Conversely, SBT was found to exert a lesser influence on
species abundance, with a smaller — but still prevailing — number of species (40) having a
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statistically significant response to either the SBT term, the SBT2 term, or both (Figure 3.5.3).
Among these, the trend of abundance of 21 of these were characterized by an SBT optimum
(Figure 3.5.3). Concerning SD SBT, the majority of species (42) showed a decreasing probability
of occurrence (PA model) with increasing annual temperature excursion, indicating a
preference for most species to be found in areas where thermal excursions are limited. In the
ABU model instead, overall species response to SD SBT appears to be weaker, with the
majority of species (44) having no statistically significant response to the variable (Figure
3.5.3). Concerning traits, we found that 17.7% of the total variance in probability of
occurrence (PA model) and 4.4% of the total variance in abundance (ABU model) was
attributable to the ones included in the analysis. Only a few statistically significant responses
(>95% posterior probability) to the included environmental variables were estimated (Figure
3.5.4); nonetheless, 5 and 4 traits (out of 9) had at least one significant relationship with any
of the covariates, in the PA and ABU model respectively (Figure 3.5.4). We found a strong
support for niche conservatism, with the taxonomic correlation parameter (rho) being 0.81
(95% credible interval: 0.67-0.92) in the PA model and 0.92 (95% credible interval: 0.80-0.99)
in the ABU model. This indicates that there is likely a set of taxonomically structured traits
beyond the ones included in the models, which are likely to be determining species’ response
to the environment.

P& ABL

&

Figure 3.5.4. Heatmap of estimated gamma coefficients indicating whether traits’ response to the chosen
environmental covariates was negative (blue), positive (red), or not statistically significant (<95% posterior
support) (white).

3.5.5. Patterns and trends in biodiversity

The biodiversity indicators estimated from the predictions given by the models for the period
1996-2024 show some spatial and temporal trends in the waters around Iceland (Figure 3.5.5).
Different areas can be defined depending on common patterns in the evaluated EBVs, and
some contrasting patterns can be identified. The first is the contrast between the northern
portion of the study area, coinciding with the deep seabed of the Icelandic sea and the
northern section of the Denmark strait, and the southern portion, coinciding with the shelf
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break of the Greenlandic and Icelandic shelf in the west-southwest of the study area, the
Reykjanes ridge, the shelf break of the Icelandic shelf in the south, and the south-central
portion of the Iceland-Faroe ridge. In the north, species richness is particularly low, with a
large fraction of the area predicted to not have any of the species considered in this study. In
this area, species richness has been stable over time, with only the upper portion of the
continental slope and lower portion of the continental shelf showing positive variations in
species richness (Figure 3.5.5A).

Figure 3.5.5. Patterns and trends in biodiversity indicators illustrated by mean value (left column) and yearly
change (right column) in: A) species richness, B) Shannon index, C) species evenness, D) functional richness, E)
functional evenness, F) functional dispersion.

Consequently, the Shannon index has been increasing in the same areas, indicating that
species’ abundance has been getting more evenly distributed (Figure 3.5.5B). However, when
adjusted by the number of species (species evenness), no particular trends stand out in the
area, with only limited and scattered increases (Figure 3.5.5C). Concerning functional
diversity, the area in the north appears to be again characterized by the lowest functional
richness of all the study area, and only limited increases in this EBV have been estimated for
the lower portion of the coastal shelf (Figure 3.5.5D). Functional evenness and dispersion
show a similar pattern, being generally low to very low with small increases in the lower
continental shelf or upper continental slope (Figure 3.5.5E and 3.5.5F). In the south instead,
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the values in all the EBVs are generally higher than the ones estimated for the north, albeit
being lower than the ones found in the Icelandic coastal shelf (Figure 3.5.5A-F). In this area,
only in a few locations the EBVs are estimated to increase in value, but in general they
remained stable or underwent decreases during the study period (Figure 3.5.5A-F). For
instance, for the southwestern portion of the Icelandic shelf break and the south-central
portion of the Iceland-Faroe ridge decreases in species richness and in Shannon diversity were
calculated, whereas the estimated values of every calculated EBV has been decreasing in the
deeper portion of the Greenlandic coastal shelf (Figure 3.5.5A-F). Another contrast can be
found between the north-northeast portion of the Icelandic coastal shelf versus the south-
southwest portion. In the south, the highest values of species and functional richness for the
entirety of the study area can be found (Figure 3.5.5A and 3.5.5D). Also the Shannon index
and species evenness values estimated for the area are the highest, even though they tend to
be similar to the ones found in the north (Figure 3.5.5B and 3.5.5C). On the other hand,
functional evenness and dispersion seem to be relatively homogeneous throughout the
coastal shelf of Iceland (Figure 3.5.5E and 3.5.5F). Despite the lower values in species and
functional richness, in the Shannon index and in species evenness, the EBVs in the northern
portion show a more homogeneous increase in value, whereas in the southern portion the
increase in EBV value was estimated to be more scattered — except for species evenness,
which has been predicted to remain relatively stable or with limited increases through time
(3.5.5A-D). Following the same trend, small increases in functional evenness and dispersion
values have been predicted for the northern portion (3.5.5E-F). The differences in EBV
patterns between the north and the south of the study area, in shallow water (coastal shelf)
and deep water (shelf break and continental slope) alike, can probably be explained by the
different community composition that distinguishes the north of the study area. Marine fish
assemblages in the north of Iceland are known to possess a larger proportion of Arctic species
than the assemblages found in the south (Mecklenburg et al., 2011). Arctic assemblages are
generally characterized by lower species richness and functional diversity (Planque et al.
2014). This could explain the lower overall diversity found in the north, and the general
increase in EBV values estimated for the area — possibly a result of the increase in
temperatures reported for the area (Campana et al. 2020, Valdimarsson 2012, S6lmundsson
et al. 2010, Sélmundsson et al. 2025), which can lead to the establishment and increase in
abundance of Boreal and Atlantic species (S6lmundsson et al. 2025, Valdimarsson et al. 2012).
Aside for this north-south main difference, some subareas show different patterns in EBV than
the surroundings. For instance, species and functional richness have been estimated to
decrease in the southeastern portion of the Icelandic coastal shelf, marking a spot of diversity
loss in that area (3.5.5A and 3.5.5D).

3.5.6. Summary

Our models indicate the importance of depth and sea bottom temperature (SBT) in
determining the distribution of the groundfish species that are found in the seas surrounding
Iceland down to 1500 m of depth and that have been considered for the study. On average,
depth explained the largest proportion of variance of all the selected predictors, and most
species were estimated to possess a depth optimum at which the highest probability of their
occurrence, or highest abundance, is to be found. Temperature was the second-most
important predictor in determining species distribution, and again temperature optima were
identified in the trends of probability of occurrence of most species. Furthermore, the
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probability of occurrence for the majority of the considered species was found to be inversely
related to the annual thermal excursion (SD SBT), indicating a general preference for smaller
seasonal variability. Overall, these observations indicate that species distribution is likely to
undergo changes with changes in sea bottom temperature, but that species distribution is
unlikely to shift towards deeper waters due to a preference for a specific depth. Therefore,
the range of marine groundfish species found around Iceland are likely shift horizontally,
rather than vertically, with climate change. Localized changes in values of the calculated EBVs
(species richness, Shannon index, species evenness, and functional richness, evenness and
divergence) for the study period (1996-2024) might be an indication of this ongoing
phenomenon, as changes in sea bottom temperatures have already been reported for the
waters surrounding Iceland (Campana 2020, Sélmundsson 2025). These climate-induced shifts
can, in the long run, alter patterns in biodiversity found across groundfish communities,
possibly by reducing the north-south difference in EBVs reported in this study.
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3.6 Central-Eastern Mediterranean Sea model
Authors: Walter Zupa, Antonella Consiglio, Matteo Chiarini, Maria Teresa Spedicato
3.6.1. Study area and data availability

Data on the occurrence and abundance of demersal species were obtained from the
Mediterranean International Bottom Trawl Survey MEDITS (Bertrand et al., 2002; Spedicato
et al., 2019) conducted annually from May to July since 1994, recently under the EU Data
Collection Framework (DCF; EU, (EU) 2017/1004). The survey applies a stratified random
sampling scheme, with haul allocation proportional to the surface area of 5 depth strata
(covering the bathymetrical range from 10m to 800m). The analyses focused on nine
Geographical Sub-Areas (GSAs; GFCM, 2009) of the Central and Eastern Mediterranean Sea,
specifically: GSA 15 (Malta), GSA 16 (Southern Sicily), GSA 17 (Northern Adriatic Sea), GSA 18
(Southern Adriatic Sea), GSA 19 (Western lonian Sea), GSA 20 (Eastern lonian Sea), GSA 22
(Aegean Sea), GSA 23 (Crete), and GSA 25 (Cyprus), as illustrated in Figure 3.6.1. The selected
spatial domain covers approximately 378,852 km2 with, on average, about 577 sampling
stations per year. The selected temporal range for the analysis spans from 1999 to 2021 to
provide comprehensive coverage of environmental drivers used in modeling. Although the
MEDITS survey has been conducted regularly on an annual basis, some gaps in temporal
continuity occurred in some GSAs, such as GSA 15 and GSA 25, where sampling began in 2005,
and some annual gaps between 2009 and 2013 in GSAs 20, 22, and 23. The survey is conducted
in each GSA using the GOC 73 trawl gear, which is equipped with a 20 mm stretched mesh
codend (Bertrand et al., 2002; Spedicato et al., 2019), allowing for the capture of small-sized
individuals. Once onboard, all specimens exceeding 1 cm in size are taxonomically identified,
and both their number and total biomass are recorded. This procedure generates a consistent
dataset that supports the calculation of standardized abundance indices (expressed as N/km?)
across hauls.

GSA

- e
wast

Figure 3.6.1. Position of all unique hauls designed for the MEDITS survey within Adriatic, lonian, and Eastern
Mediterranean Seas (GSAs 15, 16, 17, 18, 19, 20, 22, 23, 25).
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To ensure the quality of data used for the analysis, a multiple and comprehensive data
validation procedure was applied on MEDITS data using the R package RoME
(https://github.com/COISPA/RoME), routinely adopted by the MEDITS coordination group
and embedded in the newly developed Med&BS RDBFIS regional database in the
Mediterranean (https://medbsrdb.eu/), extensively checked by experts in the QualiTrain EU
project (EASME/EMFF/2020/0P/021). This process allows the users to easily identify the
presence of inconsistencies in the source data, such as haul position, taxonomic classification,
measure units, number of individuals caught, and their relative weights, which could likely
affect the results of the modeling analysis. Consequently, data correction procedures were
carried out, particularly oriented to address issues linked to the estimation of the sampling
positions and of the abundance indices at the species level. To define the species pool used in
the HMSC modeling, we calculated the occurrence and frequency of all taxa recorded in the
catches of the dataset across all hauls of the geographical domain of the study. Species
belonging to fish (A), decapod crustaceans (B), and cephalopods (C) were retained. The initial
MEDITS dataset covering the study area comprised a total of 599 taxa, including 371 fish
species (of which 321 were teleosts and 50 elasmobranchs) alongside 47 cephalopod species
and 181 crustacean taxa. For the main analysis, we selected species with frequency of
occurrence > 1%, resulting in a final list of 184 taxa. A subsequent screening based on the
availability of trait information led to a further reduction of the dataset, retaining 158 taxa for
modeling purposes (120 fish, 18 crustaceans, and 20 cephalopods).

In parallel with the species occurrence and abundance, a comprehensive life-history trait
database was developed ad hoc, as reported in the Deliverable D2.2 (https://b-
useful.eu/library/deliverables/; Spedicato et al., 2024), including 15 different traits (9
continuous and 6 categorical). Trait databases for crustaceans and cephalopods were
compiled, drawing primarily from SealifeBase (Palomares & Pauly, 2022), while for fish, the
trait dataset was assembled mostly based on Beukhof et al. (2019) complemented by FishBase
(Froese, 2005), and through phylogenetic imputation using the R package phylosem (Thorson
& van der Bijl, 2023). The traits database was finally composed of references for 363 fish taxa,
72 crustaceans, and 62 cephalopods. To characterize the environmental conditions at each
sampling location, we extracted a comprehensive set of physical and biogeochemical variables
from the Copernicus Marine  Environment  Monitoring  Service  (CMEMS)
(https://marine.copernicus.eu) using the reanalysis products with a monthly temporal
resolution and a spatial resolution of 1/24° (~0.042°). Specifically, we used the product
MEDSEA_MULTIYEAR_PHY_006_004 (Escudier et al., 2021) to retrieve sea surface and bottom
temperature (°C) and salinity (PSU), and the product MEDSEA_MULTIYEAR_BGC_006_008
(Cossarini et al., 2021) for surface chlorophyll-a concentration (mg m™), net primary
production (mmol N m~3 day™), nitrate (mmol N m™3), phosphate (mmol P m™3), dissolved
oxygen (mmol O, m3), and phytoplankton concentration (mmol N m~3). In addition, current
velocity data were used to derive eastward and northward components of horizontal
circulation. Furthermore, seabed substrate classification was retrieved from EMODnet
Geology (European Marine Observation and Data network; www.emodnet-geology.eu), using
the EUSeaMap 2023 Broad-Scale Predictive Habitat Map for Europe product (Vasquez et al.,
2023), whereas bathymetry product tiles (EMODnet Bathymetry portal,
http://www.emodnet-bathymetry.eu) were used to retrieve depth information. In addition,
other pressure drivers were explored in the models’ setup, such as the gravity index (Cinner
et al., 2018), the fishing pressure index (FPI) estimated with the application of multi-criteria
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decision analysis (MCDA) (Kavadas et al., 2015) and the fishing effort information provided by
DCF Fisheries Dependent Information (FDI), spatially disaggregated by means of a fishing
footprint derived from Global Fishing Watch (GFW). Before the model fitting, collinearity
among environmental covariates was assessed using Pearson’s correlation matrix (Annex 6,
Figure S1). Only predictors with pairwise correlation coefficients below 0.7 were retained as a
conservative rule of thumb (Dormann et al., 2013), to minimize redundancy and avoid strong
collinearity.

3.6.2. Model setup, fitting and validation

The HMSC framework was employed to model and investigate the drivers and community
responses acting on the Mediterranean demersal communities through the R package Hmsc
version 3.3-4 (Ovaskainen et al., 2017; Tikhonov et al., 2020). Due to the zero-inflated
distribution of the data, a hurdle approach involving two separate models was adopted: a
presence—absence model (occurrence) based on a probit distribution combined with an
abundance conditional on presence model (abundance model). The abundance models were
tested using different distributions, although the normal distribution was retained as it
provided the best fitting performance. Two different hurdle models were finally produced:
one using the whole time series (WTS), spanning from 1999 to 2021, and another using a
shortened time series (2012-2021) that allowed the inclusion of fishing effort (FE) derived
from DCF FDI data, spatially disaggregated using the GFW fishing footprint, which was not
tested in the WTS models. Each model included both random and fixed effects. The former
was selected to account for the spatial and temporal variations (by means of the inclusion of
the grid cells and the year effects) not directly incorporated as fixed components. As fixed
effects, bottom temperature, bottom salinity, depth, and chlorophyll-a concentration were
finally retained in both WTS and FE models. To account for potential non-linear species—
environment relationships, for both models, a second-degree polynomial function was
applied to depth, for the occurrence sub-models, and extended to all other environmental
covariates for the abundance models, except for chlorophyll-a. Chlorophyll-a concentration
and fishing effort (for the FE model) were log-transformed to reduce variability and to improve
the linearity of their relationship with the species response.

To account for interspecific variation in ecological strategies to environmental variables and
reduce computational performance, a set of biologically meaningful traits was selected and
incorporated into the models. The retained traits included maximum length, longevity, depth
preference, temperature preference, and trophic level, and were applied consistently across
taxonomic groups, including fishes, crustaceans, and cephalopods. These traits were selected
based on their ecological relevance in structuring demersal communities and mediating
responses to external pressure drivers. Maximum body length and longevity are key life-
history traits associated with species' reproductive output, population turnover, and
sensitivity to exploitation (Hiddink et al., 2019; Quesne & Jennings, 2012). Depth and
temperature preferences reflect species’ niche and are critical traits determining the spatial
distribution (Polo et al., 2025; Stuart-Smith et al., 2015). Trophic level situates species within
the food web and is important for understanding predator—prey interactions (Romanuk et al.,
2011). Four Markov Chain Monte Carlo (MCMC) chains were run, each drawing 250 posterior
samples, for a total of 1000 samples. Thinning intervals were thus adjusted for each model
individually to optimise convergence diagnostics, while ensuring computational feasibility,
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finally adopting a thinning interval of 2000. To ensure that the chains reached their stationary
distribution before posterior sampling, a burn-in phase of 250,000 iterations (transients) was
applied. As a result, each chain executed a total of 750,000 iterations (250,000 burn-in +
500,000 sampling), yielding an overall computational effort of 3 million iterations across the
four chains. This modeling setup adheres to widely accepted practices in Bayesian inference,
where sufficient burn-in and thinning are essential to reduce the impact of initialisation and
autocorrelation (Geyer, 2011; Margossian et al., 2023). Convergence of the MCMC was
assessed by evaluating the Potential Scale Reduction Factor (PSRF; Gelman & Rubin, 1992) of
model parameters, with convergence considered satisfactory when the mean PSRF values do
not exceed 1.1 (Tikhonov et al., 2020). Convergence of the MCMC chains was further assessed
using the Geweke diagnostic (Geweke, 1992) for each model parameter, and convergence was
considered satisfactory when |z| < 1.96. The model performances were evaluated as both
explanatory and predictive power through a 4-fold cross-validation. In each fold, the models
were trained on 75% of the data and tested on the remaining 25%, iteratively covering the
entire dataset. To quantify model performance, a set of complementary metrics was used,
tailored to the nature of the models. For the occurrence model the following metrics were
used: the area under the operating characteristic curve (AUC) and Tjur’s coefficient of
discrimination (Tjur R2), a robust measure for binary response models that reflects the
difference in predicted probabilities between observed presences and absences (Tjur, 2009).
For the abundance (conditional-on-presence) model, the R? was used instead, while in both
models the root mean square error (RMSE) was estimated as an indicator of the average
deviation between observed and predicted values. All the statistical analyses were conducted
in R software version 4.4.1 (R Core Team, 2024). The model runs and the cross-validation were
performed on the DRAGO high-performance computing (HPC) cluster hosted by the Consejo
Superior de Investigaciones Cientificas (CSIC), exploiting the HMSC-HPC implementation using
NVIDIA A100 40GB GPUs. For each cross-validation fold and MCMC chain, independent jobs
were launched in parallel, allowing efficient scaling of the workload across the cluster.

Based on the models’ predictions a set of biodiversity indicators was estimated. Taxonomic
richness was assessed as the total number of species present at each site, considering only
those species with an occurrence probability equal to or greater than 0.2. This threshold was
chosen to avoid excluding rare species that typically exhibit low predicted occurrence
probabilities, aligning with other studies that favor more inclusive thresholds (Chou et al.,
2020; Linhoss and Mickle, 2022). The Shannon diversity index (H') was calculated using the R
package vegan. Pielou’s evenness index (J') was computed as the ratio between the Shannon
index and the natural logarithm of species richness. To quantify functional diversity, we
calculated functional richness (FRic) and functional evenness (FEve) by constructing a
multidimensional trait space. This was achieved through a Principal Coordinates Analysis
(PCoA) based on Gower distances between species traits (Legendre and Legendre, 1998).
These metrics describe the extent to which species occupy the available functional trait space
within the community, and the uniformity of biomass distribution across that space (Mouillot
et al., 2013). We retained the first three Principal Coordinates (PCs), with a cumulative
explained variance of 83%.
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Table 3.6.1 Mean explanatory and predictive powers (from a 4-fold cross-validation) for the occurrence and
abundance sub-models for the Whole Time Series and Fishing effort models.

Occurrence Abundance
Model AUC Tjur R? RMSE R? RMSE
Whole Explanatory power 0.898 0.294 0.239 0.239 1.144
Time —

. Predictive power 0.897 0.293 0.241 0.215 1.151
Series

Fishing Explanatory power 0.9 0.305 0.241 0.264 1.111

effort Predictive power 0.895 0.303 0.245 0.207 1.151

3.6.3. Model diagnostics and performance

MCMC convergence diagnostics indicated robust convergence for both the occurrence and
abundance sub-models, either for both WTS and FE Models (Appendix 4, Fig. S2). Despite the
presence of a few outlier values, the overall mean PSRF remained well below the commonly
accepted threshold of 1.1, confirming good chain mixing. Effective Sample Size (ESS) values
were also consistently high, with mean values exceeding 995 for all parameter groups,
indicating highly efficient sampling and low autocorrelation. These results were further
supported by the Geweke diagnostic, with 90.4% and 93.2% of the parameters passing the
test in the occurrence and abundance sub-models, respectively for the WTS model, and 91.5%
and 91.3% respectively, for the FE model. The combination of diagnostics provides strong
evidence of reliable posterior estimation. Both the occurrence models showed excellent
discriminatory ability, with AUC values close or equal to 0.9 for both explanatory and
predictive components, and consistent Tjur’s R? and RMSE values (Table 3.6.1). The near-
identical performance metrics between the explanatory and predictive assessments further
highlight that the cross-validation procedure demonstrated the robustness of the models’
predictive capabilities. In particular, the negligible decline in AUC, R?, Tjur’s R, and RMSE from
training to testing supports the idea that the model is generalizable and not overfitted to the
dataset. The abundance model exhibited a slightly lower explanatory strength and predictive
accuracy in both cases, with only moderate reductions in performance across validation folds.

In the WTS model, variance partitioning (Figure 3.6.2, upper panel) revealed that in the
occurrence sub-model, the fixed effect with the highest explanatory power was depth, which
accounted on average for 55.1% of the explained variation across species. This was followed
by spatial random effects, which contributed 34.1%, and temporal variation with 4.8%. Other
environmental covariates such as bottom temperature (3.3%), chlorophyll-a (1.6%), and
bottom salinity (1.2%) had limited contribution. On the other side, in the abundance model,
explained variance was more evenly distributed. The fixed effect of depth explained 39.6% of
the variation, closely followed by spatial random effects (38.7%), while bottom temperature,
salinity and chlorophyll-a contributed 6.7%, 5.2% and 2.6% respectively, indicating a more
balanced partitioning of ecological drivers compared to the occurrence model (14.5% vs.
6.1%). In the FE model as well (Figure 3.6.2, lower panel), depth was the most influential fixed
effect in both abundance (43%) and occurrence (54%) sub-models, followed by cell and year
random effects (respectively 36% and 0.6% for the abundance sub-model and 38% and 4% for
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the occurrence one). The other environmental covariates had a limited influence, as well as
the fishing effort pressure variable, which scored 1% in both sub-models. At faunal group level,
depth was consistently the dominant driver of species responses in the abundance sub-model,
especially among bony fishes and chondrichthyans, where it explained, on average, more than
39% of the variance, in the WTS model. In contrast, environmental covariates other than
depth gained less importance in decapod crustaceans and cephalopods. For example, in
crustaceans, bottom temperature and salinity explained on average 9.65% and 9.41% of the
variance, respectively, suggesting, anyway, a moderate physiological sensitivity to water mass
properties, influencing abundance distribution. Similarly, in cephalopods, with temperature
accounting for 8.54% of the explained variance, possibly reflecting their more limited capacity
for thermal regulation and stronger environmental dependence. In the occurrence sub-model,
however, the influence of depth was markedly dominant across all taxa, and especially in
fishes. In some species, such as Serranus hepatus and Trachinus draco, depth alone explained
more than 99% of the occurrence variance, indicating an extremely narrow bathymetric niche
and strong habitat specificity. These sharp patterns underscore how bathymetry shapes the
distributional boundaries of many demersal species, with environmental gradients playing a
more nuanced role in determining abundance patterns once presence is established. Similar
patterns have been reported accordingly even for the FE model.
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Figure 3.6.2. Variance partitioning of fixed (blue) and random (red) effects for abundance (left) and occurrence
(right) for both models (Whole Time Series, upper panel; Fishing Effort, lower panel). The mean value for each
violin plot is denoted by a black dot, with the corresponding value indicated on the X axis.
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3.6.4. Species and trait responses to drivers

Across the Mediterranean demersal assemblage, the two models drew a coherent picture of
how environmental gradients shape taxa distributions and abundances (Fig. 3.6.3). In both
cases, depth emerged as the overarching driver. In the WTS occurrence sub-model 78% of
taxa reacted significantly to both the linear and the quadratic terms of depth, indicating an
overall unimodal curve that peaks at mid-slope depths. Such bell-shaped patterns, evident for
species as diverse as Merluccius merluccius and Dipturus oxyrinchus, confirm that most
demersal taxa concentrate their realised niches within a constrained bathymetric zone rather
than at the extremes of the continental shelf or slope covered by the survey. The remaining
environmental predictors affected species occurrence in a less even way. Bottom temperature
shoed significant effects in 122 taxa (77 % of the total), but negative coefficients were twice
as common as positive ones, suggesting that many taxa could be potentially penalised when
temperatures rise above their preferred range. Salinity influenced 112 taxa (71 %), and here,
positive and negative effects were almost balanced, suggesting that each group tolerates only
a limited salinity range. Chlorophyll-a affected 119 taxa (75 %), and a slight prevalence of
negative coefficients suggests decreasing presence towards the more productive coastal zone.
When we looked at responses by taxonomic group, clear contrasts emerged: cephalopods
were the only group in which positive salinity effects prevailed (= 45 % positive vs 10 %
negative), whereas negative responses dominated in elasmobranchs and crustaceans (both >
50 %), while bony fishes showed a more balanced pattern (= 25 % positive and 19 % negative).
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Figure 3.6.3. Number of species with positive (red), negative (blue), or no response (white) to each
environmental variable, for the abundance (left) and occurrence (right) environment-only WTS (upper panel)
and FE (lower panel) models. Covariates labelled with indices 1 and 2 correspond to the linear and quadratic
components, respectively, of the second-order polynomial transformation applied to the variables.

In terms of the abundance sub-model, where each continuous covariate (except the log-
transformed chlorophyll-a) was represented by a second-order polynomial, the picture
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became more variable. Bell-shaped relationships were detected in 29% of taxa for depth, 25%
for bottom temperature, and 20% for salinity, showing that only some taxa adjust their
abundance pattern to remain within their ecological optima. The pattern remained, however,
taxonomically structured: one half of the cephalopod taxa displayed a unimodal response to
bottom temperature, suggesting a tight coupling between abundance and preferred
temperature range in this group, whereas two-thirds of crustacean taxa modulated
abundance following a bell-shaped pattern with depth, indicating that crustacean taxa show
a clear niche preference with bathymetrical distribution. Regarding fishing effort, the
occurrence FE model (Fig. 3.6.3, lower panel) indicated that 31% of all taxa responded
negatively to this variable, particularly elasmobranchs (76%) and bony fish to a lesser extent
(31%). Similarly, the abundance FE model revealed a comparable proportion of negative
responses to fishing effort (32%). These results suggest a heterogeneous effect of fishing
effort across taxa, with particularly notable impacts on vulnerable species such as
elasmobranchs (e.g., Galeus melastomus, Scyliorhinus canicula, Raja clavata, Dipturus
oxyrinchus) but also commercially targeted species such as Mullus barbatus and Sardina
pilchardus.
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Figure 3.6.4. Heatmap of the estimated y parameters (posterior probability = 0.9) indicating positive (red),
negative (blue), or no response (white) of traits to the environmental coefficients. Covariates labelled with
indices 1 and 2 correspond to the linear and quadratic components, respectively, of the second-order polynomial
transformation applied to the variables.

Other important information is derived from the variance-partitioning analysis conducted on
both WTS and FE models. In the WTS model, the analysis (Annex 6, Figure S3, upper panel)
showed that species traits explain a substantial share of the differences in how taxa respond
to environmental variables. In particular, in the occurrence sub-model, traits explained 55.8
% of the responses to the environmental variables. Most of this was driven by depth (34.0 %),
with chlorophyll-a contributing 17.9 %, while temperature and salinity had smaller effects (2.8
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% and 1.1 %). The abundance sub-model showed a similar total contribution of traits (55.3 %),
but with a different pattern: temperature explained 27.8 %, depth accounted for 18.9 %,
salinity for 6.8 %, and chlorophyll-a for 1.9 %. In short, traits explain most of the variation in
where taxa occur, primarily through depth, emerging as the first-order gradient structuring
demersal fish assemblages, determining multiple abiotic constraints (light attenuation,
pressure, substrate and hydrography) (Colloca et al.,, 2003; Peristeraki et al., 2017) and
chlorophyll-a, as an indirect proxy for energy supply (Matek and Ljubesi¢, 2024), while much
of the variation in how abundant they are, mostly through temperature (Crozier and
Hutchings, 2014) and depth. Other environmental factors play only a minor role. Additionally,
for the FE model (Annex 6, Figure S3, lower panel), species traits explained 3.17% of the
variance in the abundance sub-model and 2.32% in the occurrence sub-model for the fishing
effort variable, suggesting that traits may mediate species’ sensitivity to fishing effort slightly
more in terms of abundance than in terms of presence/absence.

The gamma parameters calculated with a support level > 0.9 (Fig. 3.6.4) reveal a concise yet
balanced set of responses between traits and environmental coefficients. Ten trait—driver
pairs exceeded the 0.9 support threshold in the occurrence sub-model in WTS. Maximum
length trait showed a negative relationship with the linear depth term (Depth 1, capturing the
monotonic trend) but a positive one with the quadratic term (Depth 2, captures the curvature
of the relationship) and the bottom temperature, meaning that larger taxa have relatively
lower occurrence at mid-depths (and intermediate temperature as well) and relatively higher
occurrence toward either shallow or deep ends of the depth ranges (and temperature as well),
according to the species beta parameters. Depth preference was positively linked with linear
depth and chlorophyll-a, but negatively with bottom salinity, indicating that taxa preferring
deeper habitats tend to have a more positive linear occurrence response along the depth
gradient and to respond more positively to higher productivity, while being less frequent in
areas with relatively higher bottom salinity. Temperature preference showed a negative
association with the linear depth term and chlorophyll-a, but a positive association with the
guadratic depth term; consequently, warm-water taxa tend to exhibit depth non-linear
responses, with higher occurrence skewed toward shallower waters, and, at the same time
comparatively less frequent under higher-productivity (high chl-a) conditions. Thirteen trait—
driver associations were detected in the abundance sub-model, providing a more complex
picture of the traits' influence on species abundance responses to environmental conditions.
The results describe that depth preference mainly shows positive effects on depth (linear
component) and bottom temperature (quadratic component). The trophic level
predominantly guides the species' response to temperature, following a bell-shaped pattern.
On the other side, traits as temperature preference and maximum length were negatively
associated with the linear terms of depth and bottom temperature but positively with the
corresponding quadratic terms, implying non-linear relationships skewed towards the
extremes of both gradients. No other trait—driver combinations exceed the 0.9 support
threshold, underscoring that only a subset of ecological traits meaningfully modulates species-
level responses to the key environmental gradients considered here. Additionally, in the FE
occurrence sub-model, no trait—fishing effort associations provided any significant evidence
that gamma parameters systematically modulate species’ responses to fishing effort over
2012-2021 period. In the abundance sub-model, the mean (intercept-level) effect of fishing
effort was negative. However, the positive trait—effort association for trophic level indicates
that higher-trophic taxa show weaker declines with increasing effort. Finally, the phylogenetic

68



Project: B-USEFUL, EC HEU Grant No. 101059823

signal echoed these ecological patterns for both models. Species occurrences were strongly
structured (see Annex 4, Table S1), A indicating that closely related taxa tend to occupy similar
portions of the environmental space. Abundances, in contrast, carried a weaker phylogenetic
imprint, implying some divergence within groups, allowing congeners to attain markedly
different densities even when they co-occur.

Vet e

Figure 3.6.5. Spatial patterns of taxonomic and functional biodiversity indicators, including species richness (1%
row), Shannon index (2" row), functional richness (3™ row), and functional evenness (4" row). The indicators
are based on model predictions for three selected years: 1999 (left column), 2010 (middle column), and 2021
(right column).

3.6.5. Patterns and trends in biodiversity

The indicators of taxonomic and functional diversity showed a pronounced spatial variability
across different areas of the Mediterranean basin (Figure 3.6.5). The depth gradient appears
to be the main driver of such a variability, structuring specific spatial patterns across the
Mediterranean Sea, especially in relation to the assemblages of demersal and benthopelagic
species (e.g. Tecchio et al. 2011; Carlucci et al. 2018). Based on the Species richness and
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Shannon diversity indices, biodiversity patterns in the Mediterranean Sea typically peak at
200-400 m depth and decline beyond this range, with different rates for different faunal
components (Danovaro et al., 2010; Keller et al., 2016; Tecchio et al., 2011). At these depths,
on the slope, the presence of Vulnerable Marine Ecosystems (VMEs) as cold-water coral
communities acts as biodiversity refugia for commercially important and protected species
(Carbonara et al., 2022; Savini et al., 2014). Concerning the temporal trends observed over the
period of 23 years (from 1999 to 2021) of our analysis in the WTS model, a slight decline in all
the biodiversity indicators was detected over time. The FE model showed the same patterns
and trends, increasing the contrast at the maximum and minimum values of the indicators
(Annex 6, Figure S4). In terms of species richness, the highest values were estimated in the
Thracian Sea (the northernmost part of the Aegean Sea) and the Myrtoan Sea (located
between the Cyclades and Peloponnese peninsula), as well as around the lonian Islands (east
part of the lonian Sea); relevant values were also found off the eastern coast of Pantelleria
Island (south of Sicily), in the southern-eastern part of the Gulf of Taranto (Western lonian
Sea) and along the continental slope of the Southern Adriatic Sea. These values resulted in the
deeper fishable strata of the continental slope, approximately between 200 and 400 m depth,
consistent with depth-related spatial biodiversity patterns previously observed in the
Mediterranean Sea (Keller et al., 2016; Tecchio et al., 2011). These peaks in richness are
associated with a mosaic of habitats shaped by complex bathymetry patterns, mass-transport
deposits, and local hydrodynamic conditions (Cataudella & Spagnoli, 2011; Savini et al., 2016).
These factors contribute to increased habitat heterogeneity, supporting biodiversity at this
depth. On the contrary, the lowest values were observed in the Northern Adriatic Sea as well
as in the Southern Aegean Sea, and around Cyprus, accordingly to Granger et al. (2015). This
is probably linked to the water masses circulation within the areas (Peristeraki et al. 2017).

The diversity of demersal species depicted by the Shannon index showed similar spatio-
temporal patterns to species richness with some exceptions: in the northernmost part of the
Adriatic Sea as well as around Cyprus and Crete Islands, the Shannon index resulted in
medium/high values opposite to the richness ones; on the other side, within the Thermaic
Gulf (south of Thessaloniki) this pattern is reversed showing low Shannon index values
combined to medium species richness level. This specific pattern is likely related to fishing
activities that have impacted species composition over the years in this area, with few
commercially important species dominating in shallower waters and non-commercial species
prevailing below 200 meters, as is the case in the Aegean Sea (Labropoulou and
Papaconstantinou, 2005). The geographic patterns observed in the species richness are even
more reflected in the corresponding functional indicator. For instance, the distinct pattern
observed between the western and eastern sides of the Adriatic Sea is likely associated with
the basin's water-mass circulation, characterized by colder water masses on the western side
and an incoming of warmer, saltier waters on the eastern side; such a supply of water masses
from the lower Adriatic induces a hyaline and thermal increase with probable consequences
on basin productivity and biodiversity (Cataudella and Spagnoli, 2011; Taviani et al., 2015).
The highest values of functional richness observed in the study area suggest that a greater
number of species is also associated with a more diverse community in terms of species traits,
especially within the Adriatic basin and in the Aegean Sea. Regarding the functional evenness
estimated by the model, the trend showed a gradual decline of the indicator over time,
indicating that current demersal communities (e.g., 2021) have lower resilience and stability
in facing external drivers, such as environmental changes and fishing pressure, compared to
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the past (e.g., 1999). Indeed, a decline of both diversity and evenness indices has also been
noticed in the north-western lonian Sea over the period from 2012 to 2020 (Maiorano et al.,
2022). It is important to highlight that the biodiversity complexity observed in the study area
is shaped by the combined, and often synergistic, effects of environmental factors (e.g.,
climate change) and anthropogenic pressures (e.g., fishing effort), which together influence
the capacity of communities to cope with external stressors. Indeed, where natural variability
in environmental conditions is high, species may be more resilient to additional stressors,
whereas communities in more stable settings tend to be less tolerant and thus more
vulnerable to anthropogenic pressures (Dutertre et al.,, 2013; Jennings and Kaiser, 1998).
Consistent with this, high diversity of demersal assemblages in the Mediterranean has been
observed in the continental shelves of Sicily and the Aegean Sea, which are associated with
reduced bottom trawl fishing effort (Farriols et al., 2019).

3.6.6. Summary

The joint hierarchical modelling of demersal communities conducted across the Central-
Eastern Mediterranean Sea over a 23-year period reveals that environmental features play a
key role in shaping species distributions and abundance patterns for both WTS and FE models.
Model convergence diagnostics confirmed robust posterior estimates, and cross-validation
demonstrated strong predictive performance, especially for species occurrence sub-models.
Moreover, the abundance sub-models exhibited slightly lower explanatory and predictive
power, though they still captured relevant ecological signals, especially when evaluated
through trait-environment relationships and variance partitioning. Depth significantly
influenced the structuring of demersal assemblages, particularly in terms of species
composition, as also demonstrated in previous studies (Carlucci et al., 2018; Evagelopoulos et
al., 2021; Valente and Maiorano, 2025). In our case study, depth alone accounted for a
significant share of explained variation, particularly in the occurrence sub-models, also
influencing trait responses to environmental variables. In contrast, abundance patterns were
shaped by additional covariates, particularly temperature and salinity. Similar results were
reported by Maioli et al. (2023) in an HMSC analysis of the Adriatic elasmobranch community,
where depth emerged as the dominant driver of occurrence, supported by temperature in
determining abundance. These findings are consistent with previous studies in the Eastern
Mediterranean, which identified temperature and salinity as the primary environmental
drivers shaping benthic species distributions under climate change scenarios (Moraitis et al.,
2019; Rubino et al., 2024). Although the FE model has a limited time series, it was
implemented to provide a direct evaluation of fishing effort effects in modulating biodiversity
patterns. Despite a limited overall variance explained by fishing effort (~¥1% in both FE sub-
models), significant species-level responses were observed: approximately one-third of the
taxa responded negatively to fishing effort, with elasmobranchs and several commercially
exploited species being particularly impacted. Taxon-specific patterns and trait—-environment
relationships in the Mediterranean Sea highlight the crucial role of functional traits,
particularly body size, depth preference, and temperature tolerance, in shaping species’
ecological responses. Studies indicate that body size often correlates with depth distribution,
with medium to large-bodied species dominating at intermediate depths (Moranta et al.,
2004).
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Across faunal groups, traits such as bathymetric and temperature preferences emerge as
defining factors shaping species abundance, with many exhibiting narrow depth niches
(Agnetta et al., 2025; Colloca et al., 2003; Givan et al., 2018). Additionally, the FE model
showed that traits such as trophic level can contribute in modulating species’ sensitivity to
fishing pressure. Hence, these traits help explain why certain species are more resilient or
vulnerable to environmental change, offering critical insight into biodiversity patterns and
ecosystem functioning (Pecuchet et al., 2018). Temporal trends from 1999 to 2021 revealed a
subtle but consistent decline in biodiversity indicators, including species richness, Shannon
diversity, functional richness, and functional evenness (Albano et al., 2021; Coll et al., 2010).
The decrease in functional evenness suggests growing ecological imbalance and reduced
resilience in demersal assemblages, likely driven by environmental changes. Functional
redundancy in Mediterranean demersal communities is generally low, meaning that declines
in evenness may significantly compromise ecosystem stability and recovery capability. This
pattern is particularly pronounced in some areas of the Aegean and lonian Seas and along the
Italian Adriatic coast (Tsikopoulou et al., 2021; Valente et al., 2023). The use of biodiversity
indices derived from HMSC model outputs, rather than raw survey data, represents another
methodological advancement of this study. These model-derived indices help correct
sampling bias and improve comparisons of biodiversity patterns across different areas under
certain environmental conditions, which can be a very useful base for exploring future
forecasting of specific scenarios. These model-derived spatial and temporal patterns observed
in both taxonomic and functional diversity provide important ecological baselines that can
inform targeted conservation actions, sustainable fisheries management, and effective
marine spatial planning in this rapidly changing region. Importantly, these patterns may serve
as early-warning signals for ecosystem shifts, emphasising the need for integrative, trait-
informed approaches in future biodiversity assessments and policy development.
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3.7. Western Mediterranean model
Authors: Patricia Puerta, Alicia Gran, Manuel Hidalgo
3.7.1. Study area and data availability

We used annual data of the Mediterranean International Bottom Trawl surveys (MEDITS) from
1999-2021 for the Western Mediterranean sub-basin (Fig. 3.7.1). This region covers from the
Strait of Gibraltar to the Strait of Sicily and includes 9 fisheries management areas (i.e.,
Geographical Sub-Areas, GSA) assessed by the General Fisheries Commission for the
Mediterranean (GFCM). MEDITS data collection follows standardized protocols that account
for gears, sampling scheme and biological procedures for data collection; details in Spedicato
et al. 2019, 2024. A total of 12.666 locations were sampled over 23 years in pre-defined
locations following a depth-stratified scheme. This study focuses only on the presence and
abundance (individuals - km) of main demersal macrofaunal species and, therefore we only
consider fish (Elasmobranchii and Teleostei), cephalopods (Cephalopoda) and decapod
crustaceans (Malacostraca) groups. Additionally, we compile information on different
functional traits from FishBase (Froese & Pauly, 2023; Boettinger, 2012), SealifeBase
(Palomares and Pauly, 2023) and primary literature (see details Spedicato et al. 2024).
Continues traits include body length, life span, larval and juvenile development, vertical
biological zone, depth range and temperature preferences and diet as categorical traits. For
the feasibility of the statistical analyses, we only selected the species that fullfil with the
following criteria: i) occurred in at least 1% of the hauls (approximately 200 occurrences)
across the complete time series and, ii) information on life-history and ecological traits was
available. Final species selection accounts for a total of 191 species, including 146 fish, 24
cephalopods and 21 crustaceans.
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Figure 3.7.1. Position of all unique locations (hauls) of the Mediterranean International Bottom Trawl surveys
(MEDITS) from 1999-2021 in the Western Mediterranean. Continental shelf and slope hauls are denoted in
orange and green, respectively. The 200m isobath is shown in blue. Geographical Sub-Areas (GSA) assessed by
the General Fisheries Commission for the Mediterranean (GFCM) are indicated by gray polygons.

We combined seabed, oceanographic and fishing pressure variables to account for spatial
environmental and local anthropogenic impact gradients. The selection of the 6 final variables
was based on Pearson correlations <0.65 and Variance Inflation Factor values <3 (VIF, Zuur et
al. 2010) to avoid cross-correlation and collinearity, respectively. Main seabed substrate was
obtained from the broad-scale seabed habitat map for Europe (EUSeaMap; Vasquez et al.
2023) of the European Marine Observation Data Network (EMODnet), re-scaled to 0.042° grid
cell, and simplified to five categories: posidonia (Posidonia oceanica meadows), hard-
substrate (rock or other hard-substrates), sand, mud and mixed sediment (coarse and mixed
sediment). As oceanographic variables, monthly average of surface (SST) and bottom
(botTemp) temperatures (°C), surface (so) and bottom (botso) salinity and chlorophyl (Chl)
concentration (ug I™') were obtained from the Copernicus Marine Service Data at 0.042°
hexagonal grid cell (Nigam et al. 2021, Teruzzi et al. 2021). Finally, a fishing pressure index
(FPI) to account for trawling, purse-seine and small-scale fisheries footprint was included
(Kavada et al. 2015).

3.7.2. Model fitting, validation and predictions

HMSC was used to model demersal communities using the hurdle approach by modeling
independently presence-absence (PA model) from abundance data (AB model), using probit
and log-linear regression, respectively. Both models used the same setup and
parameterization, assuming the default prior distribution, and including as linear fixed effects
all the environmental variables (substrate, SST, botTemp, so, botso, chl, FPI). We included
second-order polynomial terms for temperature and salinity variables, since many species
may display optimum ranges in their environmental niches. The rest of the explanatory
variables were assumed to display linear relationship. As random effects, we included the year
of the survey and a fixed hexagonal grid of 0.042° as spatial units (N=1121; instead of haul
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locations) to reduce the complexity of the spatial structure. Models were fitted independently
with the Markov chain Monte Carlo (MCMC) method implemented in ‘Hmsc’ R-package
(Tikhonov et al. 2020). Each of the four MCMC included 250 samples with a thinning of 100
with the first 12.500 discarded as burn in, therefore, running 37.500 iterations and returning
1000 posterior samples in total for each model. Convergence was assessed with the Gelman-
Rubin potential scale reduction factor (psrf; Gelman and Rubin 1992). Explanatory power was
estimated using root mean square error (RMSE), as well as the area under the curve (AUC;
Pearce & Ferrier 2000) and the coefficient of discrimination (Tjur R2; Tjur 2009) values for
presence-absence model and, using R? in the abundance model. To compute predictive
power, 4-fold cross-validation was performed in each of the models. Final predictions were
the product of the two model predictions, as an estimate of species abundance conditioned
on presence over the 0.042° spatial grid. Prior computing final predictions, species presence
(i.e., threshold between zero and one values) was set using a species-specific threshold that
maximize the Percentage of Correct Classification (PCC) using “PresenceAbsence” R package
(Manel et al. 2001, Wilson et al. 2004, Freeman and Moisen 2008). Final predictions were used
to compute a suite of biodiversity indicators including taxonomic and functional richness,
evenness and dispersion.

3.7.3. Model diagnostics and performance

The convergence of PA and AB models was satisfactory as indicated by psfr (mean < 1.1) for
beta and gamma parameters, which indicate consistent results among the MCMC simulations.
The effective sample size of the MCMC was very close to the number of posterior samples
(mean difference < 8%), indicating no autocorrelation in the samples. Explanatory power in
the PA model was good (RMSE=0.249, AUC=0.854 and Tjur R?=0.190), while it was slightly
lower for the AB model (RMSE=1.176, R?=0.172). However, the explanatory power was much
larger for up to 15 species in PA model (e.g., Hymenocephalus italicus, Plesionika martia,
Lampanyctus crocodilus; Appendix 5) and 5 in the AB model (e.g., Heptranchias perlo, Dentex
maroccanus, D. macrophthalmus), with the corresponding Tjur/R? values> 0.4. As the model
includes a spatially structured random effect, its predictive power is based on both the fixed
and the random effects, resulting in a predictive power with near-identical or slightly
outperformed metrics as for explanatory power. The variance partitioning indicates similar
explanatory variables influence species variability in both, PA and AB, models (Fig. 3.7.2), with
salinity (i.e., so and botso) and temperature (i.e., SST and botTemp) variables exhibiting the
largest influence, accounting for 37.3 and 31.4 % of the total variance explained in the
community, respectively, in the PA model and, 29.1 and 28.9 % in the AB model. Most of these
explained variability was attributed to the second-order polynomial terms of bottom salinity
and bottom temperature. Substrate type showed larger explained variance for AB (11.2%)
than PA model (7.6%), while Chl and FPI have more marginal contributions (~7%) in both
models. The temporal and spatial random effects had, overall, a small contribution to the
explained variance in all cases (Fig. 3.7.2).
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Figure 3.7.2. Variance partitioning of fixed and random effects for presence-absence (top) and abundance
(bottom) models and each of the species. Species are ordered phylogenetically as denoted by the phylogenic
tree.

Temperature and FPI have larger influence on decapods occurrence (explained variance was
double as in the whole community or in the two other groups) and therefore, slightly higher
Tjur R2= 0.24 was obtained for this group. By contrast, the variance explained for cephalopods
and fish were closer to the community mean value. In the case of AB models, total and
partitioning variance values were slightly lower for cephalopods, with substrate and Chl
showing lower influence than in the other groups. Interestingly, the influence of temperature
and substrate type in the community variability was largely explained by the trait combination
(Fig. 3.7.3). Thus, traits explained 80% of the responses to temperature in PA model, while
50% in the AB model. Additionally, up to 55% and 45% of the responses to substrate types in
PA and AB model, respectively, can be also attributed to traits.
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Figure 3.7.3. Percentage of explained variance by grouped covariates attributed to traits combinations in the
demersal community.

3.7.4. Species and trait responses to drivers

The responses of species to covariates are in general larger and more widespread (both
positive and negative effects) in the PA model than in the AB (Fig. 3.7.4), with negative effects
predominating in both. Substrate type, botTemp, so and, to a lesser extent, FPI are the most
influential covariates in both models, although their effects are considerably larger and
involve more species in the PA model. For instance, bottom temperature showed negative
effects in >70% of the Teleostei and Cephalopoda classes in the PA model, whereas in the AB
model significant responses to this variable accounted for only about 40% of species when
combining both positive and negative effects. Such large negative effect of bottom
temperature may indicate a reduction in the habitat suitability due to warming, where
demersal species with cold-water preferences may be more sensitive to changes in
temperature conditions (Burrows et al. 2019, Sanz-Martin et al. 2024). SST displayed a clear
asymmetry in the responses, with linear effect (sst1) mainly associated to positive effects and
second polynomial responses (sst2) dominated by negative responses (Fig. 4). This asymmetry
was observed in both models (and also in other European regions, see section 3.1), although
more pronounced in the AB model. As aforementioned, this reflects the different temperature
niches of marine species (e.g., optimum, range, tolerance) associated with the presence of
warm- and cold-water species in the demersal communities, and their contrasting responses
to warming. Chlorophyll and FPI showed remarkable effects in the AB model compared to the
rest of the variables, but in general, they affect a larger number of species in the PA model.
However, only a few significant relationships between traits and drivers were found in both
models, mainly associated with depth and temperature preferences.
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Figure 3.7.4. Number of species with positive (red), negative (blue) or no significant (white) response to each
variable included in the model, for the presence-absence (top) and abundance (bottom) models. Note that fixed
effect with linear (1) and polynomial (2) effects are displayed independently.

3.7.5. Patterns and trends in biodiversity

From a total of eleven taxonomic (4), functional (3) and multidimensional functional (4)
biodiversity indicators calculated, we present the results for those accounting for relevant
spatial differences and patterns, including taxonomic richness, functional richness (FD_q0),
functional Shannon-like index (FD_ql1), and multidimensional functional evenness (feve),
dispersion (fdis) and divergence (fdiv) (Fig. 4; details on indicators can be found in Magneville
etal. 2022). Overall, a clear East-West gradient, where values increase, can be observed in most
indicators (Fig. 3.7.5). Taxonomic and functional (FD_q0) richness and functional Shannon-like
(FD_q1) displayed similar patterns with larger values in the Alboran Sea and the Balearic Islands,
particularly in the slope and deep-water areas. The lower impact of fishing pressure in the
Balearic Islands (Colloca et al. 2017) and the transitional role of the Alboran Sea between
Atlantic and Mediterranean systems that account for a high species turn-over (Real et al. 2021)
are likely to be responsible of the high diversity observed in these regions. Intermediate to high
values followed the slopes of the Catalan coast, the Gulf of Lion towards the west of Corsica
and Sardinia. In contrast, the Thyrrhenian Sea presented more homogeneous values, with a
hot-spot of diversity north of Sicily. Overall, coastal areas with extensive continental shelves
such as the Gulf of Valencia, the Gulf of Lions or the Northern Tyrrhenian exhibited the lower
diversity values for these indicators. However, the opposite pattern was observed for
multifunctional evenness. Functional dispersion highlighted the East-West gradient more
strongly, with particular high values observed in the Alboran Sea and the south of the Balearic
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Islands. In contrast, functional divergence only showed high values for the Alboran Sea and
intermediate ones for the southern Balearic Islands and northern Tyrrhenian coast.
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Figure 3.7.5. Mean estimates of biodiversity indicators in the Western Mediterranean between 1999 -2021,
including: taxonomic richness (richness), functional richness (FD_q0), functional Shannon-like index (FD_qg1), and
multidimensional functional evenness (feve), dispersion (fdis) and divergence (fdiv).

Temporal variability in biodiversity indicators across the Western Mediterranean revealed quite
steady trends, probably due to the larger spatial heterogeneity. Temporal linear trends for
multidimensional functional indicators slightly vary across space, with slopes variability
<|0.01|. A notable temporal change was only observed for taxonomic richness and the
functional indicators (FD_qO, FD_q1, FD_q2) (Fig. 3.7.6). Significant temporal changes are
patchy and disperse in space, but overall, an increase in functional diversity indicators over time
occurred more frequently in the continental shelves, while a decrease is observed in the slope
and deep-water areas (Fig. 5). In contrast, taxonomic richness did not show any clear pattern.
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3.7.6. Summary

The large-scale modelling of demersal communities in the Western Mediterranean showed
the importance of environmental variability for the community composition and species
distribution, mainly mediated by temperature, salinity and to a lesser extent, substrate type.
The role of fishing impact and primary production seems lower. However, the different groups
of organisms responded differently to environmental conditions, which may differ from the
community average response. Importantly, these responses to main environmental drivers
are largely mediated by traits, reflecting the long-term adaptation to different environmental
niches. Regarding biodiversity patterns, large heterogeneity is observed across the spatial
scale, while temporal changes are minor in comparison. A clear overall East-West pattern was
identified with biodiversity indicators decreasing from the Alboran Sea towards the
Thyrrhenian Sea, in agreement with previous studies (Coll et al. 2010, Piroddi et al. 2022). On
top of this pattern, slopes and deep-water areas and extensive continental shelves displayed
opposite patterns in magnitude and temporal changes of biodiversity. Such difference can be
attributed to the different composition, spatial configuration and ecosystem functioning
previously described in these two realms (Hidalgo et al. 2017, Farriols et al. 2019) that also
influence differently the spatial connectivity and the temporal stability of the shelf and slope
demersal communities. Taxonomic richness showed the largest changes across space and
time but without clear trends, while functional biodiversity indicators showed more modest
but consistent changes following the overall large-scale spatial patterns. Thus, on one hand,
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high species richness may not necessarily reflect community conservation or ecosystem
stability. On the other hand, functional diversity may better reflect adaptations and long-term
ecosystem changes than species counts alone. Trait-based approaches are increasingly
recognized as a tool for understanding ecosystem functioning and conservation under
intensifying global change (Green et al. 2022), where the Mediterranean Sea is one of the
most strongly impacted areas worldwide due to cumulative impacts of multiple pressures.

3.7.7. References

Boettiger C, Lang DT, Wainwright PC. 2012. rfishbase: exploring, manipulating and visualizing FishBase data
from R. Journal of Fish Biology 81(6), 2030-2039.

Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram FBR, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis
T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwage R, Gil J, Guilhaumon F, Kesner-Reyes K, ...
Voultsiadou E. 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE
5(8), €11842. DOI: 10.1371/journal.pone.0011842.

Colloca F, Scarcella G, Libralato S. 2017. Recent trends and impacts of fisheries exploitation on Mediterranean
stocks and ecosystems. Frontiers in Marine Science 4, 244. DOI: 10.3389/fmars.2017.00244.

Farriols MT, Ordines F, Carbonara P, Casciaro L, Di Lorenzo M, Esteban A, Follesa C, Garcia-Ruiz C, Isajlovic I,
Jadaud A, Ligas A, Manfredi C, Marceta B, Peristeraki P, Vrgoc N, Massuti E. 2019. Spatio-temporal trends in
diversity of demersal fish assemblages in the Mediterranean. Sciencia Marina, 83(51):189-206.

Freeman EA, Moisen G. 2008. PresenceAbsence: An R Package for Presence Absence Analysis. Journal of
Statistical Software 23(11), 1-31. https://doi.org/10.18637/jss.v023.i11

Froese R, Pauly D. 2023. FishBase. World Wide Web electronic publication. www.fishbase.org, version
(10/2023).

Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7,
457-472. DOI: 10.1214/ss/1177011136.

Green SJ, Brookson CB, Hardy NA, Crowder LB. 2022 Trait-based approaches to global change ecology: moving
from description to prediction. Proceedings of the Royal Society B: Biological Sciences 289: 20220071.
https://doi.org/10.1098/rspb.2022.0071

Hidalgo M, Quetglas A, Ordines F, Rueda L, Punzén A, Delgado M, Gil de Sola L, Esteban A, Massuti E. 2017.
Size-spectra across geographical and bathymetric gradients reveal contrasting resilient mechanisms of recovery
between Atlantic and Mediterranean fish communities. Journal of Biogeography, 44(9), 1939-1951.
https://doi.org/10.1111/jbi.12976

Kavadas S, Maina |, Damalas D, Dokos I, Pantazi M, Vassilopoulou V. 2015. Multi-criteria decision analysis as a
tool to extract fishing footprints: application to small scale fisheries and implications for management in the
context of the maritime spatial planning directive. Mediterranean Marine Science 16(2), 294—-304.
https://doi.org/10.12681/mms.1087.

Magneville C, Loiseau N, Albouy C, Casajus N, Claverie T, Escalas A, Leprieur F, Maire E, Mouillot D, Villéger S.
2022. mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography
45(10), 1-13. https://doi.org/10.1111/ecog.05904

Manel S, Williams HC, Ormerod SJ. 2001. Evaluating presence—absence models in ecology: The need to account
for prevalence. Journal of Applied Ecology 38, 921—931.

Nigam T, Escudier R, Pistoia J, Aydogdu A, Omar M, Clementi E, Cipollone A, Drudi M, Grandi A, Mariani A,
Lyubartsev V, Lecci R, Creti S, Masina S, Coppini G, Pinardi N. 2021. Mediterranean Sea Physical Reanalysis

84


https://doi.org/10.18637/jss.v023.i11
http://www.fishbase.org/
https://doi.org/10.1098/rspb.2022.0071
https://doi.org/10.1111/jbi.12976
https://doi.org/10.12681/mms.1087
https://doi.org/10.1111/ecog.05904

Project: B-USEFUL, EC HEU Grant No. 101059823

INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment
Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA MULTIYEAR PHY 006 004 E3R1lI

Palomares MLD, Pauly D. 2023. SealifeBase. World Wide Web electronic publication. www.sealifebase.org.

Pearce J, Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic
regression. Ecological Modelling 133, 225-245. DOI: 10.1016/50304-3800(00)00322-7.

Piroddi C, Coll M, Macias D, Steenbeek J, Garcia-Gorriz E, Mannini A, Vilas D, Christensen V. 2022. Modelling
the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the
region. Scientific Reports 12(1), 19680. DOI: 10.1038/s41598-022-18017-x.

Sanz-Martin M, Leprieur F, Albouy C, Mouillot D, Villéger S. 2024. Functional traits explain species’ responses to
environmental gradients in marine communities. Global Ecology and Biogeography, 33(2), 345—-359.
https://doi.org/10.1111/geb.13321

Real R, Gofas S, Altamirano M, Salas C, Baez JC, Camifias JA, Garcia Raso JE, Gil de Sola L, Olivero J, Reina-
Hervas JA, Flores-Moya A. 2021. Biogeographical and macroecological context of the Alboran Sea. In: Biez JC,
Vazquez JT, Camifias JA, Malouli Idrissi M (eds). Alboran Sea — Ecosystems and Marine Resources. Springer
International Publishing, Cham, 431-457.

Spedicato MT, Massuti E, Mérigot B, Tserpes G, Jadaud A, Relini G. 2019. The MEDITS trawl survey
specifications in an ecosystem approach to fishery management. Sciencia Marina, 83(S1), 9-20.
https://doi.org/10.3989/scimar.04915.11X

Spedicato MT, Zupa W, Villamor A, Soni V, Puerta P, Moullec F, Fock H, Hidalgo M, Punzé A, Lopez-Lépez L,
Mérigot B, Moura T, Henriques S, Oliveira P, Chaves C, Vasconcelos R, Rutterford L, Garcia C, Thompson M,
Engelhard G, Beukhof E, Pecuchet L, Peristeraki P, Rozemeijer MJC, Jonsdéttir IG, Cronne L, Holdsworth N,
Lindegren M. 2024. B-USEFUL. Report of available metadata and data gaps across case studies. Technical
University of Denmark. Available at: https://b-useful.eu/b-useful/uploads/D2.1-B-USEFUL report.pdf

Teruzzi A, Di Biagio V, Feudale L, Bolzon G, Lazzari P, Salon S, Coidessa G, Cossarini G. 2021. Mediterranean Sea
Biogeochemical Reanalysis (CMEMS MED-Biogeochemistry, MedBFM3 system) (Version 1) [Data set].
Copernicus Monitoring Environment Marine Service (CMEMS).

https://doi.org/10.25423/CMCC/MEDSEA MULTIYEAR BGC 006 008 MEDBFM3

Tikhonov G, Opedal @H, Abrego N, Lehikoinen A, de Jonge MMJ, Oksanen J, Ovaskainen O. 2020. Joint species
distribution modelling with the R-package Hmsc. Methods in Ecology and Evolution 11(3), 442-447.
https://doi.org/10.1111/2041-210X.13345.

Tjur T. 2009. Coefficients of determination in logistic regression models —a new proposal: the coefficient of
discrimination. The American Statistician 63, 366—372. DOI: 10.1198/tast.2009.08210.

Vasquez M, Ségeat B, Cordingley A, Tilby E, et al. 2023. EUSeaMap 2023, a European broad-scale seabed
habitat map, Technical Report. Ref. EASME/EMFF/2020/3.1.11/Lot3/S12.843624 — EMODnet Thematic Lot n° 3
— Seabed Habitats - D1.15. EMODnet. https://doi.org/10.13155/97116.

Wilson KA, Westphal MI, Possingham HP, Elith J. 2004. Sensitivity of conservation planning to different
approaches to using predicted species distribution data. Biological Conservation 22(1), 99-112.

Zuur AF, leno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems.
Methods in Ecology and Evolution 1(1), 3—-14. DOI: 10.1111/j.2041-210X.2009.00001..x.

85


https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I
http://www.sealifebase.org/
https://doi.org/10.1111/geb.13321
https://doi.org/10.3989/scimar.04915.11X
https://b-useful.eu/b-useful/uploads/D2.1-B-USEFUL_report.pdf
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_BGC_006_008_MEDBFM3
https://doi.org/10.1111/2041-210X.13345
https://doi.org/10.13155/97116

=J/ Project: B-USEFUL, EC HEU Grant No. 101059823

3.8 Barents Sea fish model
Authors: Shannon Moore, Laurene Pecuchet
3.8.1. Study area and data availability

The Barents Sea is a sub-Arctic shelf sea situated in the transition zone between the Northeast
Atlantic and the Arctic Ocean. This high latitude sea has a maximum depth of 500m and an
average depth of 230m (Kolas et al., 2024; Loeng, 1991; Eriksen et al., 2018). It is influenced
by two dominant water masses, namely relatively warm (>3° C) and saline (>34.9) Atlantic
Water flowing in from the southwest and cooler (<0° C), fresher (34.4-34.8) Arctic Water
entering from the north (Eriksen et al., 2018; Kolas et al., 2024). The colder northern region of
the Barents Sea is also characterized by its sea ice cover, which varies seasonally — with a
minimum in September (0-30%) and a maximum in April (35-85%) — and interannually (Eriksen
et al., 2018). These spatial differences in temperature, salinity, and sea ice provide more Arctic
conditions in the northern Barents Sea and more boreal conditions in the southern Barents
Sea. Where these two water masses meet in the Barents Sea is called the Polar Front, a rather
stable oceanographic front preventing colder Arctic water from dispersing further south
(Eriksen et al., 2018; Kolas et al., 2024).
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Data used in this analysis were collected as part of the Barents Sea Ecosystem Survey (BESS)
supported by the cooperation between Norway’s Institute for Marine Research (IMR, Bergen)
and Russia’s Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO,
Murmansk). The annual survey takes place from August through October (the period with the
lowest sea ice cover) throughout the Barents Sea and its adjacent waters (Eriksen et al., 2018;
Michalsen et al., 2013). Stations are distributed along a 35x35 nautical mile (about 65 km?)
grid and are sampled yearly when possible. Here, we use fish community data from bottom-
trawl survey from 2004 to 2022 in the Western part of the Barents Sea (Figure 3.8.1).
Individuals were identified to the lowest possible taxa (the species level whenever possible)
and counted. This resulted in abundance data available for a total of 108 fish taxa. We further
constrained this taxa list by excluding rare taxa, which we defined as taxa with fewer than 10
occurrences over time (year) and space (haul). One additional low-occurring fish species, the
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Greenland argentine (Nansenia groenlandica), was removed from the final taxa list due to the
lack of trait data necessary for this analysis. Therefore, our final taxa list consisted of 88 fish
taxa. To characterize the environmental niche of fish taxa, we used daily modeled
environmental covariates available from Copernicus Marine Data Store’s Arctic Ocean Physics
Reanalysis model. For this analysis, we included a set of seven physical and chemical
environmental covariates that were hypothesized to be important for demersal fish
community composition, namely depth (m), sea surface temperature (SST, °C), sea bottom
temperature (SBT, °C), sea surface salinity (SSS), sea bottom salinity (SBS), the number of
annual sea ice days, and mixed layer depth (m). The number of annual sea ice days was
calculated from sea ice concentration values provided by Copernicus. If sea ice concentration
(or the percentage of a grid cell covered by sea ice) amounted to 15% or higher, the area was
considered ice-covered. We then summed the number of ice-covered days in each grid cell
over the course of each year to calculate the number of annual sea ice days. Seasonality was
calculated for temperature (SST, SBT) and salinity (SSS, SBS) as the standard deviation of each
modelled point and year. Each covariate was provided at the spatial resolution of 12.5km? as
a daily average value, with surface and bottom measurements reported for salinity and
temperature variables. To better understand the role of traits in structuring fish communities
in the Barents Sea, we included three traits that are believed to inform fish responses to their
environment, namely, maximum length, fecundity, and trophic level. These three functional
traits were related to life history strategies, diet, morphology, and reproduction and deemed
important for determining the spatio-temporal patterns of fish distributions. Demersal fish
traits were obtained from Wiedmann et al. (2014), who gathered Barents Sea-specific fish trait
values and were further supplemented with trait data from Beukhof et al. (2019).

3.8.2. Model setup, fitting and validation

We fitted joint species distribution models (JSDMs), specifically applying the HMSC framework
to the Barents Sea demersal fish community data using the R package ‘Hmsc’ version 3.0-13
(Ovaskainen et al., 2017; Ovaskainen & Abrego, 2020; Tikhonov, et al., 2020). To allow for
quicker computing times associated with model fitting of such a large and complex model, we
opted to implement the Hmsc-HPC method as outlined in Rahman et al. 2024. We conducted
all statistical analyses in Visual Studio Code version 1.96 using R version 4.4.1 (R Core Team,
2024). To account for the 0-inflated abundance data, a hurdle model approach was applied in
which we first fit a model using presence/absence data with a probit regression (hereafter
referred to as the occurrence model) and then fit a model using logged abundance data
conditional on presence via a normal regression (hereafter referred to as the abundance
model) (Leandro et al., 2023; Piirainen et al., 2023). While HMSC can explain variation in
communities produced via environmental filtering based on the covariates provided in the
model, it can also account for any spatial and temporal autocorrelation in the taxa
occurrence/abundance data through random effects, which are accounted for as latent
factors in the model. We developed a spatially explicit random effect by constructing a
hexagonal grid covering our study area with cells measuring approximately 300km across
using the R package ‘dggridR’ version 3.1.0 (Barnes & Sahr, 2024). Sample year was used as a
temporal unstructured random effect. We used the default prior values for our models. The
posterior distribution was sampled with four Markov chain Monte Carlo (MCMC) simulations.
Each chain ran 37,500 samples with the first 12,500 samples discarded as burn-in. We applied
a thinning of 100 to each chain which resulted in 250 posterior samples for a total of 1,000
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posterior samples total. To assess model fit and ensure adequate independence of these
modeled MCMC samples, MCMC convergence was evaluated by comparing the effective
sample size of each parameter (beta, gamma, and omega) to the total number of modeled
samples collected from the four MCMC chains and by assessing if the potential scale reduction
factors for each parameter were centered around 1.00 (Gelman & Rubin, 1992). To assess
model performance, we evaluated both explanatory and predictive power for each of the
models. The performance of the occurrence model was assessed via root mean square error
(RMSE), Tjur’s coefficient of discrimination (Tjur R?), and area under the curve (AUC). RMSE
reports how close the modeled values are to the true values and is a measure of precision.
Tjur R? and AUC are both measures of the model’s ability to discriminate between the
presence and absence of a taxon in a specific community (Fielding & Bell, 1997; Pearce &
Ferrier, 2000; Tjur, 2009). The abundance model was also assessed via RMSE as well as the
coefficient of discrimination (R?), which provides an average of how well the model fits for
each species. Predictive power was assessed through a twofold cross-validation and evaluated
using the same methods as listed above for both models (occurrence and abundance).

Table 3.8.1. Mean explanatory and predictive powers (from a 5-fold cross-validation) across all modelled species
measured as AUC, Tjur R2 and RMSE.

Model Occurrence Abundance (based on
occurrence)

AUC Tjur RZ RMSE RZ RMSE

Explanatory power 0.B6 0.14 0.21 0.2%9 0.78

3.8.3. Model diagnostics and performance

MCMC convergence for both the occurrence model and the abundance model showed
satisfaction as demonstrated by the potential scale reduction factor being <1.1 for beta and
gamma parameters, respectively, in both models (occurrence = 1.000 and 1.008; abundance
= 1.000 and 0.990). This, along with visual inspection of the trace plots, confirmed that our
four chains provided consistent results. Additionally, the effective sample size of the beta and
gamma parameters, respectively, were similar to the number of posterior samples calculated
(occurrence = 855 and 779; abundance = 1044 and 1063), and we are, therefore, confident in
the models’ lack of autocorrelation between modeled MCMC samples. The mean explanatory
power for the occurrence model as measured by Tjur’s R?, AUC, and RMSE were 0.14, 0.86,
and 0.21, respectively (Table 3.8.1). The abundance model’s explanatory power was 0.78
(RMSE) and 0.29 (R?).
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Figure 3.8.2. The distribution of the proportion of the total variation in species (a) occurrence and (b) abundance
explained by each of the environmental variables and random effects (space and time) across all species. Mean
values for each environmental variable are depicted with a black dot.

All the components of our model, including environmental variables, spatial and temporal
effects, traits, and taxonomy, were able to explain 64% of the total variation in species
occurrences and 9% of the total variation in species abundances. On average, the
environmental variables explained 68% (occurrence model) and 58% (abundance model) of
the variance in species distributions explained by our models. The rest of the variance was
explained by the two included random effects (spatial and temporal), with the spatial random
effect contributing the most of the two with 21% in the occurrence model and 24% in the
abundance model. Both the occurrence model and the abundance model exhibited similar
patterns relating to the importance of each environmental variable in determining species
composition. The environmental variable having the most influence on both species
occurrence and abundance was temperature (occurrence = 32%, abundance = 25%). Salinity
was the next most important environmental variable in both models, accounting for 18% of
the variation in species occurrences and 17% in species abundances. Depth was also important
in determining species’ occurrence (12%), but it was much less influential for species’
abundances (6%). Sea ice was not particularly important in either model (occurrence = 5%,
abundance = 7%), and the effect of mixed layer depth on species occurrence and abundance
was also negligible (occurrence = 1% and abundance 3%). When breaking down temperature
and salinity, we saw that sea bottom temperature was more important than sea surface
temperature by a small margin in both models (occurrence = 13% vs. 11%, abundance = 10%
vs. 7%) (Figure 3.8.2). However, the opposite trend was observed for salinity where sea
surface salinity was always more important in explaining both species occurrence and species
abundance patterns than sea bottom salinity.
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Figure 3.8.3. Heatmap of estimated beta coefficients for the (a) occurrence model and (b) abundance model
indicating positive (red), negative (blue) or no relationships (white) of species responses to the set of
environmental covariates included in the models (with at least a posterior probability of 0.95). Species are sorted
vertically according to their taxonomic relatedness.

3.8.4. Species and trait responses to drivers

Both models displayed diverse species-specific responses to the environmental variables with
at least 95% posterior probability. However, these species-specific niches varied depending
on whether we were analyzing occurrence or abundance patterns (Figure 3.8.3). In general,
the occurrence model provided more statistically significant species-specific responses than
the abundance model. The environmental factors that significantly affected the highest
number of species’ occurrence values were depth and SBT. Species occurrence probabilities
increased in deeper waters for 30 species and species occurrence increased in shallower
waters for 19 species. SBT also affected the occurrence of an equal number of species in the
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community (49), with the occurrence probability of 29 species increasing in warmer waters
and 20 species increasing in cooler waters. Depth and SBT were also responsible for the
highest degree of species’ variation in abundance. However, increased depth only led to a
higher abundance in 5 species while it decreased the abundance of 17 species. Meanwhile,
warmer waters resulted in a higher abundance of 9 species and decreased the abundance of

15 species.
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Figure 3.8.4. The proportion of the species response to environmental covariates mediated by traits in both
our (a) occurrence model and (b) abundance model.

Traits were responsible for an average of 14% of the examined variance in species occurrence
related to a species’ niche, with traits mediating the largest proportional response of species
occurrence for number of ice days (28%), while it was the lowest for SSS (5%) (Figure 3.8.4).
Therefore, traits influence the response of species to sea ice variation more than for any other
environmental variable. However, when plotting a heatmap of the gamma responses (the
relationships between traits and the environment) in the occurrence model (Figure 3.8.5), we
observed that only one trait, maximum body size, was shown to mediate the occurrence
responses to sea ice (with at least 95% posterior support). Maximum body size also mediated
the responses to SBT and SBT seasonality, while fecundity mediated the responses to depth.
The direction (positive or negative) of these relationships suggests that we are more likely to
find larger species in regions with cooler, yet more seasonal, SBT and fewer days of ice and
that more fecund taxa are more negatively influenced by depth than less fecund taxa. As
opposed to the occurrence model, traits only mediated an average of about 5% of the
relationships between species abundances and the environment were mediated by traits.
Depth was the environmental variable most mediated by traits in the abundance model,
however, it was still mediated by traits to a lesser degree in this model than in the occurrence
model (Figure 3.8.4). Additionally, no traits were found to mediate the response of species
abundances to any of the environmental variables with at least 95% posterior support (Figure
3.8.5). Therefore, the abundance of certain trait values are not more or less expected under
specific environmental conditions.
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Maximum Body Sire 4

Figure 3.8.5. Heatmap of estimated gamma coefficients for the (a) occurrence model and (b) abundance model
indicating positive (red), negative (blue) or no relationships (white) of traits to the set of environmental
covariates included in the models (with at least a posterior probability of 0.95).

3.8.5. Patterns and trends in biodiversity

Shannon’s diversity index map and the Bray-Curtis dissimilarity index map displayed clear
spatial patterns, but with values shown to be, in general, the opposite of each other.
Community diversity was highest across the middle of the Barents Sea and wrapping up
around the northwest coast of Svalbard, while remaining lower in the southwest corner of the
Barents Sea where it meets the Norwegian Sea and in the northeast region where it meets the
Arctic Ocean (Figure 3.8.6). Meanwhile, community dissimilarity is shown to be highest in the
southwest region, out near the continental slope in the northwest corner, and along the north
and east edges of the Barents Sea, while it remained lower in the middle of the Barents Sea
(Figure 3.8.6).

a b _

Shannoo Dversty Bray-Curtis
Index Oisarnbanity inde
! 40 ' 05
5
15 B
a0 04
- -

Figure 3.8.6. Maps displaying (a) Shannon’s diversity index and (b) Bray-Curtis dissimilarity index across the study
area based on predictions made from the abundance model.

The community weighted mean trait maps displayed a similar clear spatial pattern for each of
the three traits (Figure 3.8.7). Community-weighted mean body size ranged from 31.6 to 80.4,
and, on average, larger demersal fish can be found along the southeast to northwest diagonal
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line across the Barents Sea and much smaller both northeast and southwest of this diagonal
line. Individuals higher up in the food web are generally found in the southwest half of the
Barents Sea and wrapping up around the west and northwest corner of Svalbard. Meanwhile,
lower trophic level individuals were found further north throughout the Barents Sea. The
community weighted-mean trophic level varied from 3.26 to 4.00. A similar pattern was
observed for fecundity, which ranged from 8.60 to 13.6 (logged), but with more fecund
individuals extending slightly further north than the pattern observed for trophic level.
Interestingly, all three trait values dramatically decreased upon entering the slope to the
Arctic Ocean just northwest of Svalbard (smaller individuals, lower trophic level individuals,
and less fecund individuals).

Figure 3.8.7. Predicted community-weighted mean trait values across the study area, including (a) maximum
body size, (b) trophic level, and (c) logged fecundity. Predictions were based on the product of the predicted
occurrence probability (calculated from the occurrence model) and the predicted abundance conditional on
occurrence values (calculated from the abundance model).

3.8.6. Summary

Our models depict the importance of both environmental variables and the trait values
species possess in influencing demersal fish community distributions in the Barents Sea.
Specifically, temperature, salinity, and depth explained the largest proportion of the variance
in both species’ occurrences and abundances. As the location of the Polar Front can be defined
from year to year by the temperature and salinity of the Arctic and Atlantic water masses in
the north and the south, respectively, this would suggest that the communities on either side
of the Polar Front are different. This supports the idea of a more characteristically Arctic
community in the north and a more characteristically boreal community in the south, with
some mixing in the middle. Our study supports previous findings on the drivers of fish
community composition in the Barents Sea (see Johannesen et al., 2012, Aschan et al., 2013,
and Johannesen et al., 2017). However, the inclusion of traits and taxonomy in such a rigorous
way via HMSC adds for a richer understanding of how these communities respond to their
environment. In fact, the division between Arctic communities and boreal communities is
further evidenced by the patterns we see with traits amongst the taxa in our study. Sea ice is
the environmental variable to which species distributions respond the most (and second
most) to as a result of the traits they possess. Additionally, the mapped community-weighted
mean trait values display distinct gradients in values for all three traits explored in this study.
Based on these maps, one could even argue for a third demersal fish community in the Barents
Sea, besides the arctic and boreal, that exists in the middle near the Polar Front that consists
of both arctic and boreal fish. This was and briefly discussed by Fossheim et al. (2015) and
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implied by Frainer et al (2021) but corroborated in the present study. A third arcto-boreal
community is further substantiated by Shannon’s diversity index map and the Bray-Curtis
dissimilarity index map. The regions with high Shannon’s and low Bray-Curtis, found mostly in
the region where this third arcto-boreal community is found, share many species with similar
abundances, whereas those regions with low Shannon’s and high Bray-Curtis, found mostly in
the northern and southern tips of the study area, have distinct species compositions with little
overlap. We therefore stress the importance of a trait-based approach for community
distribution studies, as they provide a more holistic view of what is driving community
composition.
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4. Alternative approaches to biodiversity assessments
4.1. Biodiversity assessment across organism groups in the Greater North Sea
Authors: Murray Thompson, Lily Greig, Keith Cooper and Georg Engelhard
4.1.1. Study area and data

Phytoplankton and zooplankton data were obtained from the Continuous Plankton Recorder
survey (CPR, https://www.cprsurvey.org/data/our-data/; Batten et al., 2003). Samples were
collected using a Continuous Plankton Recorder that is towed behind ships and continuously
filters plankton from the water column using a moving band of silk gauze (270 um mesh) at a
depth of around 7 m. Observations with unique spatial and temporal information correspond
to a tow length of approximately 10 nautical miles and a volume of 3 m?3 of seawater
(henceforth, plankton samples). Because it is unfeasible to count all phytoplankton in each
sample, sample counts per taxa were derived by statistically resampling to estimate mean
sample-level abundance. Phytoplankton counts were then rescaled to approximate the initial
subsample counts (i.e. with many singletons which are typical of community samples and are
required to estimate the effective number of species, see below) by dividing each count per
taxa by the lowest count per taxa within each sample and rounded to the nearest whole
number. Larger zooplankton counts were estimated at the sample-level, meaning no
statistical resampling nor rescaling was required. We make use of phytoplankton (n taxa =
173) and zooplankton (n taxa = 119) data available from 1980-2021 for the northeast Atlantic
downloaded on 09/07/2024, including information from 114925 samples. Benthic
macrofaunal data were sourced from the OneBenthic database
(https://rconnect.cefas.co.uk/onebenthic_portal/) with all publicly available data
downloaded on 07/11/2024, including information on 3700 taxa from 29403 comparable grab
and core samples (henceforth benthic samples, i.e., sampled using a 0.1 m? grab or core and
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processed using a 1 mm sieve) collected between 1985-2023 from shelf waters of the
northeast Atlantic. Fish observations from 38363 otter trawl surveys from across the
northeast Atlantic spanning years 1983-2020 and including 513 taxa were obtained from
Lynam & Ribeiro (2022) who collated multiple surveys stored on the ICES database of trawl
surveys (DATRAS). Hauls (henceforth, fish samples) had a mean swept area of 0.7 km?2 (sd =
0.02; had a mean duration of 31.7 minutes). All data on biota incorporate taxonomic
information from the World Register of Marine Species (WoRMS Editorial Board, 2024), with
each taxon uniquely identified by its ‘aphialD’, allowing data to be outputted using
standardized nomenclature. Taxonomic resolution varied considerably among groups.
Phytoplankton were identified with the lowest precision (15% to species, 46% to genus, none
to family, and 39% only to class or higher). Most zooplankton records were resolved to species
(69% to species, 6% to genus, 6% to family, and 19% to class or above), this precision was
higher for benthic invertebrates (79% to species, 14% to genus, 3% to family, and 4% to class
or higher). Fish achieved the highest resolution, with nearly all records (99%) identified to
species and only 1% to genus or higher. Given this variability, we used the lowest (i.e. ideally
species) available taxonomic resolution for phytoplankton, zooplankton, and benthos,
retaining records identified to species, genus, and family, while restricting fish to species-level
data. This approach maximizes the retention of both taxonomic detail and abundance
information across assemblages, while acknowledging that diversity indices, particularly for
phytoplankton, capture broader taxonomic richness rather than species richness alone.

4.1.2. Methods and indicators

Rarefaction and extrapolation based on Hill numbers provide a unified framework for
estimating a-, B-, and y-diversity that corrects for biases arising from variable sample sizes and
sampling effort, and is applicable across different assemblages (Chao et al., 2014; Chao et al.
2023; Jost, 2007). Diversity estimates were all generated per assemblage. To estimate a-
diversity, we calculated the effective number of species for each sample at twice the mean
sample count for that assemblage (20 for phytoplankton, 42 for zooplankton, 365 for benthos,
and 15933 for fish) using individual-based rarefaction and extrapolation. y-diversity for each
assemblage was estimated using the following approach: at the time and location of each
sample estimates were generated by incorporating nine surrounding samples (selected at
random where more than 9 were available) collected within 6 months and within 75 km of
that sample and applying sample-based rarefaction and extrapolation to 20 samples. Where
<9 surrounding samples were available, y-diversity estimates were dropped because variation
in the number of samples can incorporate more or less R-diversity, biasing estimates
(Thompson et al. 2021). R-diversity is an estimate of the effective number of communities in
a given area and was calculated as:

B=y/® (1)
where @ represents mean a-diversity (Jost, 2007; Tuomisto, 2010).

All a-, 8-, and y-diversity estimates were made for qO (the effective number of species; i.e.
species richness), gl (the effective number of typical species; i.e. exponential of Shannon
entropy) and g2 (the effective number of dominant species; i.e. inverse Simpson index),
yielding 9 taxa-based biodiversity indices. These were supplemented with three abundance-
based biodiversity indices of sample count, coefficient of variation in sample-count (Wang et
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al. 2014), and sum of counts (i.e. a-, B-, and y-diversity equivalents for abundance,
respectively), yielding 12 biodiversity indices in total. All rarefaction and extrapolation
analyses were conducted using the R package iNEXT (Hsieh et al., 2014). To assess temporal
changes in biodiversity we used Kendall’s tau trend analysis between annual means of our
biodiversity indices for ICES statistical rectangles. Kendall’s tau scores are presented for each
rectangle to show regions of temporal change and thus explore contrasting directions of
change across assemblages. Kendall’s tau scores of —1 to +1 represent a 100% probability of a
decreasing or increasing trend, respectively. Kendall’s tau trend analysis is rank-based and
non-parametric because our response variables were not normally distributed. Using
Kendall’s tau has the added benefit of detecting correlations which may be non-linear, since
temporal change in the responses could take any smoothly varying (curving) function.

y-diversity
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Fig. 4.1.1. Mean (top row) and temporal change (bottom row) in y-diversity across assemblages. Temporal
increases are shown by red cells (Kendall’s tau correlation values between 0 and +1), declines by blue cells
(correlation values between 0 and -1), and cells with significant correlations have a black border. Observations
span 1980-2021 for plankton, 1985-2023 for benthos, and 1983-2021 for fish.

4.1.3. Results

There were widespread increases in fish y-diversity, followed by widespread increasing trends
for zooplankton and then phytoplankton, with increases also detected for benthos where
sufficient time series existed (Figure 4.1.1). Increases in y-diversity largely occurred in the
North Sea, where fish and zooplankton had relatively low mean values, whereas
phytoplankton mean y-diversity was relatively high (Fig. 4.1.1; there were insufficient spatially
extensive time-series for benthos for a similar comparison). Temporal change in a-diversity
largely reflected the direction of change in y-diversity for fish, benthos and zooplankton, but
with weaker and more patchy correlations (Fig. 4.1.2). There was limited temporal change in
phytoplankton a-diversity and no regions clearly changing in the same direction (Fig. 4.1.2).
Where temporal change in B-diversity was detected, trends were broadly positive for

97



Project: B-USEFUL, EC HEU Grant No. 101059823

phytoplankton and zooplankton, decreasing for benthos and with contrasting directions of
change for fish (Fig. 4.1.3).
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Fig. 4.1.2. Mean (top row) and temporal change (bottom row) in a-diversity across assemblages. Temporal
increases are shown by red cells (Kendall’s tau correlation values between 0 and +1), declines by blue cells
(correlation values between 0 and -1), and cells with significant correlations have a black border. Observations
span 1980-2021 for plankton, 1985-2023 for benthos, and 1983-2021 for fish.
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Fig. 4.1.3. Mean (top row) and temporal change (bottom row) in R-diversity across assemblages. Temporal
increases are shown by red cells (Kendall’s tau correlation values between 0 and +1), declines by blue cells
(correlation values between 0 and -1), and cells with significant correlations have a black border. Observations
span 1980-2021 for plankton, 1985-2023 for benthos, and 1983-2021 for fish.
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4.1.4. Summary

Our analysis of more than 180,000 samples across phytoplankton, zooplankton, benthos, and
fish shows that biodiversity in the northeast Atlantic has undergone widespread changes
within and across assemblages since the 1980s. The most consistent signal was widespread
increases in fish y-diversity (i.e. regional species richness), with more patchy but generally
increasing trends for zooplankton and phytoplankton with changes largely in the North Sea.
Benthic time-series were more limited spatially, but show some temporal increases in y-
diversity and a-diversity (i.e. sample scale species richness), with decreasing B-diversity (i.e.
differences in species composition between samples). Patterns of a-diversity broadly
reflected those of y-diversity, while B-diversity exhibited contrasting trajectories among
assemblages, highlighting the multidimensional nature of biodiversity change across
assemblages. We provide a unified, multidimensional biodiversity assessment across marine
assemblages using rarefaction and extrapolation based on Hill numbers. This approach
corrects for sampling biases and yields comparable a-, B-, and y-diversity indices across
groups.
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4.2 Data driven analysis on biodiversity indicators of North Sea invertebrates
Authors: Justin Tiago, Marcel Rozemeijer

Biodiversity indicators provide essential information on the state and dynamics of marine
ecosystems, and are increasingly used to inform conservation, management, and policy.
Understanding how biodiversity varies across space and time is essential for assessing
ecosystem resilience, identifying vulnerable species and habitats, and informing sustainable
management. Within the North Sea, benthic communities are subject to multiple
anthropogenic and climate pressures, and long-term monitoring surveys offer a unique
opportunity to assess trends in biodiversity at multiple spatial and temporal scales (Callaway
et al., 2002; Reiss et al., 2010; Kroncke et al., 2011). For this task we applied a suite of empirical
biodiversity indicators derived from the ICES Beam Trawl Survey (BTS) between 2000 and
2024. Specifically, we quantified species richness, Pielou’s evenness, Shannon and Simpson
diversity indices per haul, and beta diversity across ICES rectangles. To examine compositional
shifts, we identified the most abundant species per decade and evaluated changes in
dominant taxa over time. In addition, we explored relationships between biodiversity patterns
and environmental drivers through co-inertia analysis (Dolédec & Chessel, 1994; Dray &
Dufour, 2007), linking species composition with gradients in depth, sediment characteristics,
trawling effort, temperature, nutrients, and chlorophyll-a. This combination of biodiversity
indicators, dominant species trends, and multivariate analyses provides a comprehensive
picture of how benthic communities in the North Sea have changed in the 215 century, and of
the environmental and anthropogenic factors that structure these communities.

4.2.1. Study area and data availability

This analysis focused on temporal and spatial patterns in biodiversity indicators of North Sea
benthic invertebrates, using data from the annual ICES Beam Trawl Survey (BTS) collected
between 2000 and 2024. Survey coverage extended from 51°N to 58°N and 3°W to 9°E,
encompassing the central and southern North Sea. All invertebrate records were extracted
from the ICES DATRAS database for Quarter 3 hauls conducted by the Netherlands, Germany,
the United Kingdom, and Belgium. Belgian BTS data for 2000-2009, 2010, and 2016 were
excluded due to closed species lists that limited detection of rare taxa. Only epibenthic
invertebrates and cephalopods were retained for analysis. For each haul, biodiversity
indicators were calculated using the vegan package in R. Indicators included:

e Species richness (number of taxa per haul)

e Pielou’s evenness

e Shannon diversity index

e Simpson diversity index

e Beta diversity, calculated as mean Bray—Curtis dissimilarity per ICES rectangle across
years

Spatial patterns in biodiversity indicators were mapped for three time periods (2000-2009,
2010-2019, 2020-2024). Temporal trends were analyzed across the full time series (2000—
2024) using generalized additive models (GAMs) fitted with smoothing splines. Furthermore,
to examine how environmental variables covaried with species composition, a co-inertia
analysis was performed using the ade4 package (Dolédec and Chessel, 1994; Dray and Dufour,
2007). Species abundance data were Hellinger-transformed and ordinated with principal
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component analysis (PCA), while environmental covariates (including depth, sediment grain
size, orbital current velocity, sea surface temperature, chlorophyll-a, nitrogen, phosphorus,
and trawling effort) were standardized. Co-inertia analysis was then applied to quantify the
shared co-structure between species and environmental ordinations, with results visualized
as biplots. Statistical significance was assessed with Monte Carlo permutation tests (n = 999).
All plotting and statistical analyses were performed in R (R Core Team 2025).

Figure 4.2.1. Maps of North Sea spatial locations for biodiversity indicators: species richness, species evenness,
and Shannon diversity, from 2000-2009 (left), 2010-2019 (middle), and 2020-2024 (right).
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4.2.2. Results

Spatial patterns of biodiversity indicators showed marked changes in benthic community
structure across the North Sea from 2000-2024 (Figure 4.2.1). Species richness was highest in
the northern and northwestern North Sea during 2000—2009, while the southern and central
basin generally supported lower richness. Over the subsequent decades, richness expanded
southward and eastward, such that by 2010-2019 and especially 2020-2024, higher richness
was more evenly distributed across the basin, with notable increases in the German Bight and
southern coastal areas. Species evenness showed an opposite tendency. Evenness was
relatively high across much of the basin during 2000-2009, with particularly strong values in
the north and northwest. Over time, however, evenness declined in southern and eastern
regions, coinciding with the expansion of richness. By 2020-2024, high evenness remained
mostly confined to the northwestern North Sea, while many southern sites showed lower
values. Shannon diversity, which integrates richness and evenness, showed persistently high
values in the northwestern North Sea across all decades. In contrast, the central and southern
North Sea showed more moderate diversity, with limited increases through time.

Species Richness Species Eveness

P,

Year Year

No of species per haul
Species eveness

Shannon Diversity Simpson Diversity

unitiess
unitiess

Year Year

Beta diversity by ICES rectangle

e

Mean Bray-Curtis dissimilarity

Year

Figure 4.2.1. Temporal trends in biodiversity indicators in North Sea BTS hauls from 2000—-2024, based on GAM
smoothed splines with 95% confidence intervals (grey shading). Indicators shown are species richness, species
evenness, Shannon diversity, Simpson diversity, and beta diversity (mean Bray—Curtis dissimilarity across ICES
rectangles).
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Time-series analyses of biodiversity indicators revealed clear but contrasting temporal
trajectories across the 2000—2024 period (Figure 4.2.2). Species richness increased steadily
throughout the time series, rising from an average of ~7—8 species per haul in the early 2000s
to >12 species per haul in the most recent years. In contrast, species evenness declined
gradually, from around 0.46 in the early 2000s to ~0.43 by 2024. Shannon diversity and
Simpson diversity, which combine richness and evenness, both showed initial increases up to
~2010-2012, followed by relative stability and slight fluctuations in recent years. Despite
declining evenness, the continued rise in richness appears to have maintained moderate-to-
high values of Shannon and Simpson indices through the later years of the series. Finally, beta
diversity (mean Bray—Curtis dissimilarity across ICES rectangles) showed a weak but consistent
upward trend, indicating a gradual increase in spatial turnover of species composition.
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Figure 4.2.3. Co-inertia analysis of relationships between environmental variables (red arrows) and species
composition (blue arrows) across the North Sea

A co-inertia analysis was performed to explore the joint structure between species
composition and environmental variables across the North Sea (Figure 4.2.3). The analysis
revealed a significant overall co-structure (Monte-Carlo test, p = 0.001). The first two axes
together explained 88.4% of the total projected inertia (Axis 1: 66.7%; Axis 2: 21.7%). Species
and environmental variables were strongly structured along these axes, with a subset of
species (e.g. Carcinus maenas, Ophiura ophiura) aligning closely with trawling intensity and
current speed, while others (e.g. Alloteuthis subulata, Sepia officinalis) showed positive
association with chlorophyll-a. A distinct cluster of taxa including Neptunea antiqua, Hyas
coarctatus, Buccinum undatum and Aphrodita aculeata were opposed to trawling gradients
and instead associated with greater depth. Sediment characteristics (D50) also structured
another set of species aligned with sandy habitats (e.g. Cancer pagarus, Psammechinus
miliaris, Necora puber and others).
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The BTS hauls revealed that a small group of benthic species consistently dominated catches
across decades (Table 4.2.1). Astropecten irregularis and Asterias rubens were the two most
consistently abundant species, appearing at the top of all three time periods. Several other
taxa were also common throughout, including Ophiura ophiura, Echinocardium cordatum,
Pagurus bernhardus, and Crangon crangon, indicating a core group of widespread and
persistent species in the North Sea benthic community. At the same time, there were some
temporal shifts in the composition of the most common species. Overall, the results suggest
that while the North Sea benthic community is structured around a stable core of dominant
species, there are also decadal shifts in the relative prominence of certain taxa, notably a
decline in Ophiothrix fragilis and an increase in Spisula subtruncata and Ophiura albida in
recent years.

Table 4.2.1. Top ten most abundant species per decade (2000-2024).

Period Species Period Species Period Species
Astropecten Astropecten irregularis Astropecten
irregularis irregularis
Asterias rubens Asterias rubens Qohiura ephivra
Qrlipthrix fragilis Crhiura ophivra Asterias rubens

cordatum
SLRUERn, Crausen SrauEQn crausen Laammechinus
§ E E miliaris
i Echinpsardium e Pagurus jgruhardus. i Echinocardium
o cordatum L a cordatum
& S S
Landalus montaguyl spisula subtmuncata Pagurus
bernhardus
Pagurus bernhardus. Lsqmmechinug miliaris Cphiurg albida
Corvates carmixalaunus Crhinrg albida Corvates,
miliaris

3.7.3. Discussion

Our analysis revealed clear spatio-temporal shifts in benthic biodiversity indicators across the
North Sea between 2000 and 2024. The most obvious pattern was the steady increase in
species richness, which expanded from northern and northwestern regions into southern and
eastern parts of the basin. This redistribution suggests a gradual broadening of species-rich
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assemblages away from historically diverse northern areas (Callaway et al., 2002; Frid et al.,
2009; Reiss et al., 2010) into coastal and shelf areas of the southern North Sea and the German
Bight. This geographical expansion of richness parallels similar findings of climate-associated
increases in species richness for North Sea fishes (Hiddink and ter Hofstede, 2008) and
predicted north—south benthic distributional shifts under climate change (Weinert et al.
2016). However, this expansion was accompanied by declines in species evenness, particularly
in southern and eastern areas. By 2020-2024, these sites supported more species overall, yet
communities were increasingly dominated by a smaller subset of taxa. This trade-off was also
evident in the Shannon and Simpson diversity indices, which remained relatively stable with
rising richness offsetting declines in evenness. The trade-off between increased richness and
decreased evenness is consistent with long-term benthic monitoring showing greater
community dominance despite overall rising species numbers (Clare et al. 2015; Frid et al.
2009). The persistence of high Shannon diversity in the northwestern North Sea highlights the
importance of this region as a long-term reservoir of both richness and balanced community
structure. In contrast, the more variable diversity in central and southern regions reflects
uneven trajectories, with rising richness but also growing dominance by a few widespread
species. Collectively, these patterns indicate that while benthic biodiversity has expanded
geographically, communities have become more uneven and heterogeneous. The modest but
consistent rise in beta diversity further supports this view, suggesting that differences in
community composition among ICES rectangles have become slightly more pronounced over
time. The co-inertia analysis provided further insight into how community change aligns with
environmental pressures and gradients. The significant shared structure between species
composition and environmental covariates indicates that community dynamics are not
random but strongly shaped by environmental forcing. Trawling effort and current speed were
associated with taxa such as Carcinus maenas and Ophiura ophiura, while high chlorophyll-a
and temperatures were linked to certain cephalopod species including Alloteuthis subulata
and Sepia officinalis. Depth and sediment characteristics structured another set of species,
with taxa such as Neptunea antiqua, Hyas coarctatus, and Buccinum undatum more prevalent
in deeper, less disturbed habitats, and others (Cancer pagurus, Psammechinus miliaris)
aligned with sandy sediments. Links between trawling disturbance, temperature, and benthic
biomass (Rijnsdorp et al. 2020; Tiano et al., 2020; Clare et al. 2021) provide mechanistic
support for the observed co-inertia signals. These relationships highlight the role of both
anthropogenic (e.g. trawling) and environmental (e.g. productivity, depth, substrate) drivers
in shaping benthic assemblages.

The analysis of dominant species further illustrates the balance between stability and change
in North Sea benthic communities. A small core group of taxa (Astropecten irregularis, Asterias
rubens, Ophiura ophiura, Echinocardium cordatum, Pagurus bernhardus, Crangon crangon)
remained abundant throughout the two decades, pointing to their resilience and ecological
dominance in the region. However, shifts in the prominence of other taxa, such as the decline
of Ophiothrix fragilis and Pandalus montagui, and the rise of Spisula subtruncata,
Psammechinus miliaris, and Ophiura albida, reflect ongoing turnover within the broader
community. These changes may reflect climate-driven shifts in temperature tolerance,
changes in habitat availability, or responses to fishing pressure and eutrophication. Taken
together, our results suggest that North Sea benthic communities are undergoing a process
of redistribution and restructuring. Richness has increased and spread into new areas, but this
expansion is often accompanied by reduced evenness and subtle increases in spatial turnover.
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Core species remain widespread, but changes in the prominence of secondary taxa indicate
that communities are not static. This has implications for ecosystem resilience: while higher
richness may buffer communities against disturbance, declining evenness and increasing
dominance can reduce functional redundancy and make systems more vulnerable to specific
pressures. The strong links observed between community composition and environmental
drivers further highlight the need to consider both anthropogenic pressures and natural
gradients when assessing benthic biodiversity risk.

3.5.6. Summary

This analysis shows that benthic biodiversity in the North Sea has undergone substantial
changes in the previous two decades. Species richness has increased and spread into southern
and coastal regions, while evenness has declined, indicating a trend toward more uneven
community structures dominated by a subset of taxa. Diversity in the northwestern North Sea
has remained comparatively stable, reinforcing its historical pattern of supporting balanced
and diverse benthic assemblages (Reiss et al., 2010). A small set of core species persisted
throughout the study, but decadal changes in other taxa suggests the gradual turnover within
communities. Multi-variate co-inertia analysis further demonstrated strong links between
species composition and environmental drivers, including trawling, depth, sediment, and
productivity. These findings suggest that North Sea benthic ecosystems are simultaneously
expanding in richness and diversifying geographically, but are also becoming more uneven.
This pattern has important implications for ecosystem functioning and resilience, supporting
the need to account for both anthropogenic pressures and natural gradients in future
management and conservation strategies.
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4.3 Data driven analysis on fish biodiversity in the Iberian Coasts
Authors: Sofia Henriques, André Martins, Corina Chaves, Rita Vasconcelos, Teresa Moura
4.3.1. Study area and data availability

In the Iberian coast, demersal communities (mostly fish but also some invertebrate species)
were sampled with a bottom otter trawl during the Portuguese Autumn Groundfish Survey
(International Bottom Trawl Survey) that takes place along the Portuguese continental waters
from 20 to 500 m depth (more details in ICES, 2017). The time periods 2005-2011, 2013-2018
and 2021-2023 were considered for the analysis of spatial and temporal patterns and changes
of taxonomic and functional diversity of demersal communities of the Iberian Coast. For the
analysis of functional diversity, the following traits were used to characterize each species
caught: age at first maturity, body length, maximum depth, fecundity, trophic level, vertical
biological zone (bathydemersal, bathypelagic, demersal, benthopelagic, pelagic-neritic,
pelagic-oceanic, reef-associated), thermal tolerance (0-2.5, 2.5-5, 5-7.5, 7.5-10, 10-15, >15),
mobility (sedentary, territorial, moderately mobile, highly mobile), diet (generalist,
benthivorous, herbivorous, piscivorous, planktivorous). Data sources used for characterizing
species traits were: Beukhof et al. 2019, Rfishbase (Boettiger et al. 2006), Henriques 2008,
Henriques 2013, Polo et al. 2024,, Koutsidi et al. 2019, Butt et al. 2022, and finally expert
judgement to fill gaps. Three taxonomic diversity indices (species richness, Shannon diversity
index, Pielou evenness index) and two functional diversity indices (functional richness and
functional evenness) were used. Functional diversity indices were computed using Gower
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distance, due to the use of both continuous and categorical/ordinal traits, with R package mFD
(Magneville et al. 2022).
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Figure 4.3.1. Biodiversity indicators for marine fish communities in the Iberian Coast in 2010 and 2015

including: Species Richness (A), Shannon Wiener evenness (B), Pielou evenness (C), as well as the functional
diversity indices functional richness (D) and functional evenness (E).

4.3.2. Results

Species richness generally decreased from higher to lower latitudes along the Iberian coast,
which is in agreement with macroecological patterns for marine communities globally (Figure
4.3.1A). The large-scale spatial pattern of Shannon diversity throughout the Iberian coast was
quite similar to the spatial pattern of species richness (Figure 4.3.1B). On the other hand,
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Pielou evenness index did not show an evident latitudinal pattern of spatial variation (Figure
4.3.1C). Functional richness also generally showed a decrease from higher to lower latitudes
along the Iberian coast, though less evident than for species richness (Figure 4.3.1D). Similarly
to taxonomic evenness, functional evenness did not show an evident latitudinal pattern of
spatial variation (Figure 4.3.1E).

4.3.3. References

C. Boettiger, D. T. Lang and P. C. Wainwright (2012). rfishbase: exploring, manipulating and visualizing FishBase
data from R. Journal of Fish Biology 81(6), pp. 2030-2039. DOI: 10.1111/j.1095-8649.2012.03464.x

Beukhof E., Dencker T. S., Palomares M. L. D. and Maureaud A. (2019): A trait collection of marine fish species
from North Atlantic and Northeast Pacific continental shelf seas [dataset]. PANGAEA,
https://doi.org/10.1594/PANGAEA.900866

Henriques S. (2008) Comparative analysis of the efficacy of multimetric indices based on fish communities in
order to assess the ecological quality of coastal waters. MSC Thesis. Faculty of Sciences of the University of
Lisbon. http://hdl.handle.net/10451/1404

Henriques S. (2013) Marine fish assemblages as indicators of anthropogenic pressures:identifying sensitive
metrics. PhD Thesis. University of Lisbon. http://hdl.handle.net/10451/8913

ICES (2017). Manual of the IBTS North Eastern Atlantic Surveys. Series of ICES Survey Protocols SISP 15. 92 pp.
http://doi.org/10.17895/ices.pub.3519
Magneville C., Loiseau N., Albouy C., Casajus N., Claverie T., Escalas A., Leprieur F., Maire E., Mouillot D. and

Villéger S. (2022). mFD: an R package to compute and illustrate the multiple facets of functional diversity.
Ecography, 2022(1).

Polo J., Lopez-Lépez L., Engelhard G.H., Punzdn A., Hidalgo M., Rutterford L.A., Baridin M.S., Gonzdlez-lrusta J.M.,
Esteban A., Garcia, E. Vivas, M. and Pecuchet L. (2025, Trait-Based Indicators of Marine Communities' Sensitivity
to Climate Change and Fishing. Diversity and Distributions, 31: e13959. https://doi.org/10.1111/ddi.13959

Koutsidi M., Moukas C. and Tzanatos E. (2020) Trait-based life strategies, ecological niches, and niche overlap in
the nekton of the data-poor Mediterranean Sea. Ecol Evol. 10: 7129-7144. https://doi.org/10.1002/ece3.6414

Butt N., Halpern B.S., O'Hara C.C., Allcock A.L., Polidoro B., Sherman S., Byrne M. et al. 2022. A Trait-Based
Framework for Assessing the Vulnerability of Marine Species to Human Impacts. Ecosphere 13(2): e3919.
https://doi.org/10.1002/ecs2.3919

109


http://doi.org/10.17895/ices.pub.3519
http://doi.org/10.17895/ices.pub.3519

=J/ Project: B-USEFUL, EC HEU Grant No. 101059823

5. Summary and perspectives

The statistical modelling of marine species distribution, composition and overall diversity
featured within this deliverable report represent a broad range of marine ecosystems and
organisms sampled along European shelf seas from the Eastern Mediterranean Sea to
Greenland and Barents Sea. Consequently, the organisms and areas considered are exposed
to very different regional and local environmental conditions, both in terms of climate and
hydrography, but also with regards to the type and level of human activities and their
associated pressures. Furthermore, the model development relies on available monitoring
data that may differ in terms of the spatio-temporal extent, as well as the amount and
resolution of species occurrence and abundances data and their associated trait information.
Despite these differences, the model results generated allows us to compare key outputs
across areas and organism groups, as well as between more local or regional applications of
the model framework. Below we briefly elaborate on outcomes in terms of the underlying
drivers and responses of species to environmental conditions, as well as the overall patterns
and trends in a number of biodiversity indicators (i.e., representing EBVs useful for informing
MSP in general and placement of MPAs in particular). For a more detailed discussion regarding
findings in each area and the relation to previous studies on the region and organism group in
guestion we refer the readers to the discussion in each sub-section of chapter 3 and 4.

In terms of environmental drivers we found that ocean climate and hydrography are primary
determinants of species distributions and community composition (Table 5.1). Among these
bottom temperature stands out as a key predictor throughout most areas with species
responding both positively and negatively to increasing temperature, reflecting that
community composition is generally composed of a broad range of species with different
tolerances to the range of temperature variation within each area. Hence, while the mean
temperature and degree of seasonality various markedly along the pronounced latitudinal
gradient from sub-tropical to temperate and sub-polar conditions, the regional communities
generally contain a mix of species adapted to relatively warmer or colder waters. In addition
to the broad and ubiquitous effect of temperature, we found a number of environmental
variables with more regional and local impacts, conditioned on the specific conditions of each
study area. For instance, depth was found a strong determinant of species distribution and
composition, especially in areas where monitoring surveys cover both the continental shelf,
as well as the shelf break towards greater depths (e.g., lceland, Mediterranean).
Consequently, community composition contains a mix of taxa with either more shallow or
deeper depth distributions as reflected by their different affinities and responses to depth.
Salinity was also found a key determinant of species distributions and composition but mainly
in the Baltic Sea where the pronounced gradient from marine to brackish conditions cause a
sharp decline in overall richness and composition. Other examples include ice cover which was
found a strong determinant of species distribution only in the sub-polar Barents Sea. Taken
together, the broad range of studies indicate that environmental filtering, conditioned on
drivers and conditions operating across both larger and local spatial scales is a primary
community assembly process determining the past, current, but also future distribution and
composition of marine organisms throughout European Seas. However, while a large degree
of variation in species distribution and abundance can be explained by the set of
environmental conditions included, the importance of spatial random effects across our
models underscore the importance of other drivers and assembly processes. These include a
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range of largely unmeasured environmental covariates not yet accounted for in our modelling
setup, but also potential biotic effects channelled through competitive or predator-prey
interactions. Hence, we recommend further efforts compiling long-term and high-quality data
on such candidate drivers (e.g., fine-scaled habitat and fishing effort information resolved by
gears and over longer time horizons), but also stress the need for a better understanding of
the role and relative importance of local biotic interactions, partly reflected by the pair-wise
residual associations, reflecting species found more or less frequently than expected from
their environmental affinities.

The set of biodiversity indicators estimated from the fitted and validated models, or from data
analysis, include both species and community EBVs (i.e., reflecting the overall taxonomic and
functional richness, evenness and dispersion). These indicators show marked spatial variation
in terms of patterns and trends both within and among regions and metrics. Overall, the
metrics of taxonomic and functional richness are interlinked and therefore show generally
similar spatial patterns and gradients across areas. However, the latter is generally less
constrained in space with higher values over larger areas, indicating that the presence and
composition of traits can be conserved, despite absences or declines of individual species. The
metric of evenness show generally different, or even opposite spatial patterns compared to
richness. This suggests that areas and local assemblages with relatively high number of species
and traits are often composed of both highly abundant and very rare taxa, leading to
pronounced differences in densities and therefore a larger degree of dominance and lower
evenness. In terms of temporal trends, we observe similar differences between metrics within
and across areas. For instance, many regions (e.g., North Sea, North-East Atlantic) show
increasing taxonomic and functional richness, especially towards higher latitudes, but often
with declining community evenness, suggesting an increasing dominance by a few species.
While the time frame of the presented analysis is generally constrained to the most recent
decade(s), our findings show recent responses to climate variability and change in many areas,
reflecting underlying changes in the distribution and composition of species in response to
warming. Taken together, the differences and similarities in patterns and trends among EBVs
may challenge end-users and managers involved in MSP and MPA planning, especially since
hotspots or broader regions of “high biodiversity” may seem contingent on the set of
indicators and metrics considered. Hence, we will advocate and adopt a broader and holistic
perspective aiming to embrace this complexity when identifying candidate locations and areas
for protection under different scenarios of change. This will be followed up in WP5-WP6 and
will involve the joint considerations across a suite of both community and species EBVs (for
instance reflecting taxa of particular conservation status), combined with more composite
metrics and indicators, such as Hill numbers.

Finally, the overall performance and explanatory power of the models are generally well
capable of representing and explaining the past and current distributions of species in terms
of occurrence, as reflected by high values of overall AUC (~0.9). However, the models are
generally worse in terms of explain variation in species abundance or biomasses (r2~0.2 to
0.4), likely due to an inadequate representation of key processes that regulate the productivity
and population dynamics of species, notably growth, reproduction and survival. Despite the
lower performance of predicting biomass, it is likely less of an issue in terms of overall
biodiversity predictions. This because most of the indicators rely either on presence-absence
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predictions only (e.g., richness), or account for relative biomasses in their estimation (e.g.,
evenness), rather than the absolute values predicted by the model. Besides, the modelling
framework used provide standard errors for all predicted variables, allowing for formal
sensitivity testing and accounting for uncertainty in model predictions. Taken together we are
confident that the models provides not only increased process understanding of the drivers
and assembly rules structuring marine communities, but also a means to predict, visualize and
map patterns and changes in overall EBVs relevant for conservation and protection within the
broader context of MSP under the upcoming WP5-WP6.

Table 4.1. Summary of key results of modelling representing individual analysis carried out on selected
organisms groups and regions.

Area Growup #of Method Skill Dwivers Patterns Trends

taxa

ME Fish 151 150 091 Temp> Highly wariable Variable,

Atlantic [ALIC) Chiz= between regions and increass/decrease in SR
0.21(R2] | Sslinity metrics and Fric towards

higher/lower latitudes

Morth 523 Fish &7 1500 0.8% Temp=+ ‘Variable across Variable, weak trends
[ALIC) Chiz= metrics, difference [short time frame)

0.20 Fishing between N [higher)
[RMSE] and 3 lawer)

Baltic Sea Fish 73 15D 093 Salinity= Variable across ‘Variable, slight increase in
[ALIC) Depth= metrics, decline from [ W, decline in E
0.43(R2] | Temp WioE

Baltic Sea Banthas 143 15DhA 0591 Sal== ‘Variable across ariable, but generally
[ALC) Coygen= metrics, decline from | wesk positive trends

Temp W-E BCrOSs metrics

lceland Fish 82 JSDM 0.932 Depth== Variable across Variable, but slight
[ALC) Temp> metrics, difference incregss in M

between N and 5 and
037 (R2] on-f offshore

Centralf Fish, 120, J5DM 0.89 Depth=> Variable across Variable, slight general

East Med. | Decapod, 18,20 [ALC) Temp= metrics, highest decline in richness and

Z=3 Ceph. 0.24(R2] | Sslinity Eggap Ses SWENMEsS

West Fish, 145, J5DM 0.89 Temp> Variable across Variable, no overall trends

hed. Sea Decapod, 1,24 [ALC) Szabed= metrics, difference W- | =cross metrics

. Salini E and on-joffshore
beh 0.24 [R2) i 4

Barents Fish 83 15DhA 0.86 Temp> Nao trends

Zzm [ALC) Depth= between N and 3 (in
0.25 (R2] | Salinity> terms of zlpha and

Seaice beta diversity)
Greater Phatopl, All Data MNA Ma analysiz | Variable across General increase in Morth
Morth 322 | Zgogl obs. In | driven groups, difference Sea, slight dedine in
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6. Appendices

The Appendices linked to this report comprise auxiliary material regarding data and modelling
for each of the sections presenting model results for different areas and organism groups.

Version History

HISTORY OF CHANGES
Version Date Changes
1 01/06/2025 Report structure and core text: Martin Lindegren
2 15/058/2025 Updated version including contributions from all co-
authors
3 30/09/2025 Final version prepared for upload (by Martin Lindegren
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Appendix 1. North East Atlantic fish model

Table A.1. Bottom trawl surveys included in the study.

l'hnhertl’

- Sep.-Nov. (ICES, 2023) (ICES, 2017)
[Seimundszon et
2021 2, 2010}

Feb.-Apr, Oct.- 1.583 [ICES, 2022) [ICES, 2017)
Naw.

Jan.-Mar., Jun.- 18559 (ICES, 2023) (ICES, 2020)
Sep.
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Figure S1. Correlation matrix between candidate environmental variables. Highly positively correlated variables
(> 0.7) are shown in red; highly negatively correlated variables (< -0.7) in blue. Variable label colors denote
whether the variable is from the sea surface (green), sea bottom (orange) or where this distinction is not
applicable (black).
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Figure S2. Whole-period models MCMC convergence from the Beta (left column) and Gamma (right column)
parameters. Each row shows each model’s distribution of the potential scale reduction factor values and its
mean (value at the top of each panel) for the point estimate and the upper confidence interval.

116



Project: B-USEFUL, EC HEU Grant No. 101059823

Baia Gamma
Ll | 1 1.01 1 1.01
. 1,03 :
104+ -
1.034 1024 gg
1.024
1014
1.01 §
1.00- 'Ei i ‘--__-‘::.' 1004 {: : ::}"
107 1 1.01 1 1.0
1034 -
51 g
102
1031
1.014
1.01 £ i 2
1.004
1,054 1 1.01 1 1.01
1.044 Ly E
1031 1034
Etuza 1.024 E
_E-.n:- 1014
g o0
1.004 1.004
B
& 101 1 1.01 1 1.04
: oo
g-.ns.- 1034 g
a2
& 1034 1024 g
E 1.01 4 i}
1014
1.004
1.084 1 1.01 1 1.01
' 034 1.024 g
1024 1.014 E
1.014
1,004 $ 1.00+ &
1 1.01 1 1.01
<ol 102
1.04 gg
1024 1014 é;
1,001 C‘J)\_n\_——-\- 1,001 é

Faint eat Upﬂﬂlf ci

Figure S1. Decade models MCMC convergence from the Beta (left column) and Gamma (right column)

Pnn.l [

Uppar C1

parameters. Each row shows each model’s distribution of the potential scale reduction factor values and its
mean (value at the top of each panel) for the point estimate and the upper confidence interval.
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Appendix 2. North Sea fish model

Table S1: Categories of biological traits used to assess functional composition.

Trait Categories Label Description

Growth coefficient (K} Continuous lgg_srowth Growth coefficient K
estimated from the Von
Bertalanify equation

Fecundity Continuous lgg_ fecundity, Mumber of offspring per

female per batch or per year

Offspring size Continuous log_affspring.size Diameter if the released
eggs, length of the egg case
or length of the young {mm)

Maximum length Continuous length Maximum reported length

Age at maturity Continuous lgg_gEE. maturity. First age at which the
individual is able to
reproduce

Habitat Bathydemersal hahitathathydemersal Zone of the water column

used by the species

Bathypelagic habitarbathyeslzsis
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)

Benthopelagic habitatbenthopelasgic
Demersal hahitatdemearsal
Pelagic habitatoelagic,
Reef-associated habitatreef-associated
Feeding mode Benthivorgus feading.meodebenthivorous Main food source from
Herbivorous ) sor st.urna!:h c::unter?ts.anl:l
IoRding. mRARDRIRIRIQNS, biclogical descriptions of
Generalist feeding.modsgensralist adults
Piscivorous feeding. medspisgiveraus,
Flanktivarous feeding modeplankiivorous
Body shape Comprassiform, body shapecompressiform, Shape of the body
Eel-like body.shapessl-like
Elangated body.shapeslongated
Flat body.shansflat
Fusiform body shapefusiform.
Short and/or deep body.shapeshort and/or deep
Fin shape Fointed finshapenoinizd, Shape of the caudal fin
Rounded Mnshapereunded
Truncate finshapetruncate
Lunate fin.shapelunale
Heterocercal finshapeheterocercal
Farked finshapeforked
Spawning type Guarder i) rder Type of spawning related to
Mon-guarder spawning fvoenan-guarder parental care
Bearer SRAVNINE INBEbEAre
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Figure S1: Correlation matrix for the environmental parameters

Table S2: MCMC convergence metrics.

Model Beta parameter Gamma
parameter
Mean potential scale reduction 1.285 1.041
factor
Occurrence
Mean effective sample size 180.942 200.415
Mean potential scale reduction 1.301 1.087
Bi factor

iomass

Mean effective sample size 144.725 199.479
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Figure S2: Violin plots of the potential scale reduction factor (psrf) for beta and gamma

parameters.
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Figure S3: Proportion of the species response to environmental covariates explained by traits
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Appendix 3. Baltic Sea fish model

Table S1: Categories of biological traits used to assess functional composition’

Trait Categories Label Description
Growth coefficient (K) Continuouz lpE_Browth Growth cosfficient K
estimated from the Von
Beralanffy squation
Fecundity Continuous ee fepundity Number of offspring per
female per batch or per year
Cffspring size Continuous o oifzpring.size Diameter if the released
eggs, length of the egz case
or length of the young (mm)
Maximum length Continuous lpg_lensth.max Maximum reported length
Age at maturity Continuous lpe_ R maturity First age at which the
individuzl is able to
reproduce
Hzhitat Bathydemsrzz habitatbsthydemerss Zone of the water colurmn
used by the species
Bathypelagic hahitatbathypsiazic e s
Benthopelagic hakiratbsnthapslass
Demerss| habitatdamarsal
Pelagic hakitateslagis
Reef-associated hakitaireef-as=ociated
Feeding mode Benthivaraus Tesdinz.madehanthivarous Miain faod source from
. . . stomach contents and
Herbivarous fesding.modeherhivorous biclogical descriptions of
Generzlist fesdingmadearnsralist adults
Pischvorous Tesdinz.modeniztivonous
Planktivorous Tesdinzmadenlankiivarays
Body shape Comarszsifonm, bady.shreeromprsssifam Shape of the body
Eel-like bady.shapeesl-liks
Elongated bady.sheeeslonzated
Flat bady.shapsflas,
Fusiform bRdy.shaesfusifzom
Ehort znd,for deep bedy.shapeshart and/or deep
Fin shape Poirtad finshapenointed Shape of the caudal fin
Rounded finshapsroundsd
Truncate finahapstiungate
Lunzte finahanalknats
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Heterocercal finahapshataracercal
Forked fin.shapsforked
Spawning type Guarder spEwWnine.typesvarder Type of spawning related to
. parental care
Mor-guarder SEEwmine.ypenan-guarder
Bearer shavmine.typebearer

chl

depth

02 _floor

T_floor

Sal_floor 0.01 0.01

Oé/

&
GQ’Q\

Figure S1: Correlation matrix for the environmental parameters

Table S2: MCMC convergence metrics

Correlation

-10

Madel Beta parameter Gamma parameter
Mean potential scale reduction factor 1104 1.015
Occurrence
Mean effective sample size 880.659 1003.481
Mean potential scale reduction factor 1207 1.026
Biomass
hean effective sample size 525318 1043.743
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Figure S2: Violin plots of the potential scale reduction factor (psrf) for beta and gamma
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Figure S3: Proportion of the species response to environmental covariates explained by traits
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Appendix 4. Central-Eastern Mediterranean Sea model

Depth .-0.03-0.43 0.2 0.43-0.25-0.15-0.29-0.28-0.12-0.230.06-0.04 -03-0a05

Sea surface temperature -0.0:' 0.1 0.090.13-0.18-0.78-0.030.08-0.13-0.140.03-0.050.02 0.03
Bottom temperature -0.43 0.1 .—0.16-0.360.31 0.04 0.3 0.320.210.230.02-0.010.32 0.5
Salinity - 0.2 0‘09-0‘16- 0.6 -0.56-0.35-0.61-0.58-0.49-0.56 0 -0.18-0.06-0.22

Bottom salinity 0.430.13-0.36 0.6 .-0.51-0.33-0.5 -0.47-0.37-0.460.08-0.11-0.19-0.41

Correlation
Chlorophyll a - 1.0
Dossolved oxygen 0.7
Nitrate .
Net primary production
Phosphate T

Phytoplankton concentration -0.23—0.140.23-0.560.46.0.47,_1 . J0.0Z0.0S 014027 = -10
Eastward current 0.06 0.030.02 0 0.08-0.02-0.04—0.03-0.02~0.03—0.02.-0.24 0 -0.06

Northward current -0.04-0.05-0.01-0.18-0.110.04 0.03 0.06 0.01 0.05 0.03-0.24.0.06 0.05
Gravity index -0.3 0.02 0.32-0.06-0.190.17 0.11 0.180.180.070.14 0 0.06.0.32
FP| -0.850.03 0.5 -0.22-0.410.290.19 0.3 0.320.18 0.27-0.060.05 0.32.
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Figure S1. Pearson correlation matrix of the environmental and physical covariates included in the
HMSC models. Each cell displays the pairwise Pearson correlation coefficient between covariates. The
background colour gradient highlights the direction and magnitude of the correlation (blue for
negative, red for positive), while numerical values allow precise interpretation.
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Figure S2. Convergence diagnostics for the MCMC models of Abundance (left column) and Occurrence
(right column), showing the distribution of Potential Scale Reduction Factor (PSRF) values for the beta
(first row) and gamma (second row) parameters. For each panel, distributions are shown separately

for the point estimate and the upper confidence limit, with the corresponding mean PSRF value
reported at the top.
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Figure S3. Proportion of the species’ responses to environmental covariates explained by life
history traits in the WTS (upper panel) and FE (lower panel) models.
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Figure S4. FE models’ spatial patterns of taxonomic and functional biodiversity indicators, including
species richness (1% row), Shannon index (2™ row), functional richness (3" row), and functional
evenness (4™ row). The indicators are based on model predictions for two selected years, including
2012 (left column), and 2021 (right column).

Table S1. Posterior estimates (2.5%, 50%, and 97.5% quantiles) of the phylogenetic signal (A) for both
occurrence and abundance data of the WTS and FE models.

Occurrence Abundance
Model 2.50% 50% 97.50% 2.50% 50% 97.50%
WTS 0.54 0.7 0.84 03 0.45 0.66
FE 0.52 0.72 0.24 0.44 0.e2 0.72
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Appendix 5 Western Mediterranean Sea model

Sea bottom slope .
Fishing effort . 0.09

Silica 0.14 -0.19
Phosphates 0.2 -017
Oxygen .0.13 0.29 -0.14 -027  Correlation

Primary productivity . 0.32 -0.11 0.09 -0.14 -0.12 I
0.7

Mitrates -0.13 0.14 - 0.22 -0.16
Chlorophyll . 0.15 0.52 0.18 0.35 -0.11 -0.22 . -0.7

Salinity .-0,31 0.25 -0.24 -0.51 0.2 0.08 0.29 0.07 10
SD SBT -0.38 0.49 0.03 0.4 049 007 0.28 -0.08 -0.29
SBT -0.03 0.69 -0.27 0.16 -0.14 -0.57 0.13 0.12 0.25 -0.02
Time from noon . 0 001 0 001 0 001 001 0 0.01-001-001

Depth .-0.01 -0.24 -0.58 0.01 -0.39 -0.31 -0.27 -0.39 -0.33 -0.47 -0.07 0.33
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Figure S1: correlation matrix between the environmental predictors considere for the study. A correlation >0.7
is indicates in red, while a correlation <-0.7 is indicate in blue.
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Figure S2: distribution of the potential scale reduction factors and related upper confidence interval of the beta
(A-B) and gamma (C-D) parametres estimated for both models. The circle indicates the average value, which is
noted at the bottom of each violin and boxplot.
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PA ABU

Actual sample Actual sample
2000

20001 size = 1000 size = 1000

10004 1000

836.62 1045.34

Actual sample 1500 Actual sample
size = 1000 size = 1000

15004

Effective sample size

10004 1000

951.60 981.97

Figure S3: distribution of the effective sample size of the beta (A-B) and gamma (C-D) parametres estimated for
both models. The circle indicates the average value, which is noted at the bottom of each violin plot.
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Figure S4: explanatory (light grey) and predictive (dark grey) power for each of the species included in the PA
model, in terms of under the receiver operating characteristic curve (AUC) (A), Tjur’s R2 (B) and the root mean
square error (RMSE) (C)
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Figure S5: explanatory (light grey) and predictive (dark grey) power for each of the species included in the ABU

model, in terms R2 (A) and the root mean square error (RMSE) (B)

131



100% -

75%-=
50%-
25%-
Covarlate
. Depth
| Eu
I I I I I [ soser
0% - L Ll Salinity
Mean slope

Time from noon

100% '

Chlorophyll

Bottom trawling

B cio
.

Proportion of explained variation

75% -

|

£

50% =|

i

25% -|

DA DD (& 5 B B oD N B BaBaD B O O 200G B R T NG IR RCRC AL FON- S PRI R R R T SARC TS 932 52l st a2 28R 18 6% (2 o, 202 225 B N
SRS cgt%eog:}%bo CLET ‘&a\\xz«g QGQ%E\L%‘E;‘QGQ S %Q\(\c.:g,\\c@ O S AR bﬁ‘c\c“"'\“\"‘@“ﬁ\%&“’@oi\\h’ o \’\tfé.f:i\g%\\n" R ﬁ*b(\\
o

0% !

&
PR o & e BN ) 2 & 3 X
R o L) WA
Qbfjoq&a&»‘, oA e B, NSO R, e Ee((\\&%%op el \b%%&\\@ e ,,ooz,ci RGeS Celat Ul ‘a“a‘\ix%o AN
0o oo Gl oG el el P ool eierel i 8 ol oo R o) e o W cl 0, T G, Dol i e QiR i
e BX R ‘%\,‘z‘} 0%"1-;3\3)9 f‘e\\e?;ga‘%'%\\%vf%\u v"})«;s@v%“ ARG t,\,ei&‘,\z’g%?%&o AT AP
K \ 5o

CEAT
@ o e L) \Cll 0% 52
o) S0 R Slaa e of ZI) 005 7e 70,
oiiel oo c’"g o \éf“\e& S "Gtuge”:d‘c‘g\o*’\“
e %
(% N & WA
o e
£ o )

o
o
%
,

AR NP SN e 2!
DI o S R IR R 0 N zq\g?’ 6% O
SR AV R S s
3
I e R M A i i e
¥ s B CACAE S ¢
Y

Figure S6: proportion of explained variance attributable to each one of the predictors included in the study, by
species.
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